6,976
Views
341
CrossRef citations to date
0
Altmetric
Original

Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU)

, , &
Pages 105-120 | Received 15 Dec 2006, Accepted 03 Jan 2007, Published online: 09 Jul 2009

References

  • Church CC. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol 2002; 28: 1349–1364
  • Miller MW, Everbach EC, Miller WM, Battaglia LF. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 2. Medium dissolved gas (pO(2)) content. Ultrasound Med Biol 2003; 29: 93–102
  • Apfel RE. Acoustic cavitation series. 4. Acoustic cavitation inception. Ultrasonics 1984; 22: 167–173
  • Neppiras EA. Acoustic cavitation. Phys Rep 1980; 61: 159–251
  • Apfel RE. Acoustic cavitation. Methods of experimental physics, Edmonds. Academic. 1981; 19: 355–411
  • Apfel RE. Acoustic cavitation prediction. J Acoust Soc Am 1981; 69: 1624
  • Crum LA, Fowlkes JB. Acoustic cavitation generated by microsecond pulses of ultrasound. Nature 1986; 319: 52–54
  • Holland CK, Apfel RE. Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J Acoust Soc Am 1990; 88: 2059–2069
  • Miller DL. Acoustic cavitation series. 6. Gas body activation. Ultrasonics 1984; 22: 261–269
  • Miller DL. A review of the ultrasonic bioeffects of microsonation, gas-body activation, and related cavitation-like phenomena. Ultrasound Med Biol 1987; 13: 443–470
  • Miller DL. Update on safety of diagnostic ultrasonography. J Clin Ultrasound 1991; 19: 531–540
  • Cardinale A, Lagalla R, Giambanco V, Aragona F. Bioeffects of ultrasound: An experimental study on human embryos. Ultrasonics 1991; 29: 261–263
  • Holland CK, Deng CX, Apfel RE, Alderman JL, Fernandez LA, Taylor KJW. Direct evidence of cavitation in vivo from diagnostic ultrasound. Ultrasound Med Biol 1996; 22: 917–925
  • Miller MW, Miller DL, Brayman AA. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 1996; 22: 1131–1154
  • Barnett SB, Ter Haar GR, Ziskin MC, Rott HD, Duck FA, Maeda K. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med Biol 2000; 26: 355–366
  • Fowlkes JB, Holland CK. Mechanical bioeffects from diagnostic ultrasound: AIUM consensus statements—Introduction. J Ultrasound Med 2000; 19: 69–72
  • Holland CK, Roy RA, Biddinger PW, Disimile CJ, Cawood C. Cavitation mediated rat lung bioeffects from diagnostic ultrasound. J Acoust Soc Am 2001; 109: 2433
  • Church CC. A theoretical study of acoustic cavitation produced by “positive-only” and “negative-only” pressure waves in relation to in vivo studies. Ultrasound in Medicine and Biology 2003; 29: 319–330
  • Holland CK, Apfel RE. An improved theory for the prediction of microcavitation thresholds. IEEE Trans Ultrason Ferroelectr Freq Control 1989; 36: 204–208
  • Apfel RE, Holland CK. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol 1991; 17: 179–185
  • Church CC. Frequency, pulse length, and the mechanical index. Acoust Res Lett Online-Arlo 2005; 6: 162–168
  • Ter Haar GR. Ultrasonic contrast agents: safety considerations reviewed. European Journal of Radiology 2002; 41: 217–221
  • Vaezy S, Martin R, Schmiedl U, Caps M, Taylor S, Beach K, Carter S, Kaczkowski P, Keilman G, Helton S, et al. Liver hemostasis using high-intensity focused ultrasound. Ultrasound Med Biol 1997; 23: 1413–1420
  • Vaezy S, Martin R, Yaziji H, Kaczkowski P, Keilman G, Carter S, Caps M, Chi EY, Bailey M, Crum L. Hemostasis of punctured blood vessels using high-intensity focused ultrasound. Ultrasound Med Biol 1998; 24: 903–910
  • Martin RW, Vaezy S, Kaczkowski P, Keilman G, Carter S, Caps M, Beach K, Plettt M, Crum L. Hemostasis of punctured vessels using Doppler-guided high-intensity ultrasound. Ultrasound Med Biol 1999; 25: 985–990
  • Vaezy S, Martin R, Kaczkowski P, Keilman G, Goldman B, Yaziji H, Carter S, Caps M, Crum L. Use of high-intensity focused ultrasound to control bleeding. J Vasc Surg 1999; 29: 533–542
  • Poliachik SL, Chandler WL, Mourad PD, Ollos RJ, Crum LA. Activation, aggregation and adhesion of platelets exposed to high-intensity focused ultrasound. Ultrasound Med Biol 2001; 27: 1567–1576
  • Vaezy S, Martin R, Crum L. High intensity focused ultrasound: A method of hemostasis. Echocardiography 2001; 18: 309–315
  • Hwang JH, Vaezy S, Martin RW, Cho MY, Noble ML, Crum LA, Kimmey MB. High-intensity focused US: A potential new treatment for GI bleeding. Gastrointestinal Endoscopy 2003; 58: 111–115
  • Vaezy S, Noble ML, Keshavarzi A, Paun M, Prokop AF, Cornejo C, Sharar S, Chi EY, Crum LA, Martin RW. Liver hemostasis with high-intensity ultrasound—Repair and healing. J Ultrasound Med 2004; 23: 217–225
  • Vaezy S, Vaezy S, Starr F, Chi E, Cornejo C, Crum L, Martin RW. Intra-operative acoustic hemostasis of liver: Production of a homogenate for effective treatment. Ultrasonics 2005; 43: 265–269
  • Zderic V, Keshavarzi A, Noble ML, Paun M, Sharar SR, Crum LA, Martin RW. Hemorrhage control in arteries using high-intensity focused ultrasound: A survival study. Ultrasonics 2006; 44: 46–53
  • Rivens IH, Rowland I, Denbow M, Fisk NM, Leach MO, Ter Haar GR. Focused ultrasound surgery-induced vascular occlusion in fetal medicine. Proceedings of SPIE 2003; 3249: 260
  • Denbow ML, Rivens IH, Rowland IJ, Leach MO, Fisk NM, Ter Haar GR. Preclinical development of noninvasive vascular occlusion with focused ultrasonic surgery for fetal therapy. Am J Obstet Gynecol 2000; 182: 387–392
  • Trubestein G, Engel C, Etzel F, Sobbe A, Cremer H, Stumpff U. Thrombolysis by ultrasound. Clin Sci Mol Med Suppl 1976; 3: 697s–698s
  • Lauer CG, Burge R, Tang DB, Bass BG, Gomez ER, Alving BM. Effect of ultrasound on tissue-type plasminogen activator-induced thrombolysis. Circulation 1992; 86: 1257–1264
  • Luo H, Steffen W, Cercek B, Arunasalam S, Maurer G, Siegel RJ. Enhancement of thrombolysis by external ultrasound. Am Heart J 1993; 125: 1564–1569
  • Sehgal CM, Leveen RF, Shlansky-Goldberg RD. Ultrasound-assisted thrombolysis. Invest Radiol 1993; 28: 939–943
  • Olsson SB, Johansson B, Nilsson AM, Olsson C, Roijer A. Enhancement of thrombolysis by ultrasound. Ultrasound Med Biol 1994; 20: 375–382
  • Kornowski R, Meltzer RS, Chernine A, Vered Z, Battler A. Does external ultrasound accelerate thrombolysis? Results from a rabbit model. Circulation 1994; 89: 339–344
  • Shlansky-Goldberg RD, Cines DB, Sehgal CM. Catheter-delivered ultrasound potentiates in vitro thrombolysis. J Vascular and Interventional Radiology 1996; 7: 313–320
  • Hamm CW, Steffen W, Terres W, De Scheerder I, Reimers J, Cumberland D, Siegel RJ, Meinertz T. Intravascular therapeutic ultrasound thrombolysis in acute myocardial infarctions. Am J Cardiol 1997; 80: 200–204
  • Tachibana K. Prototype therapeutic ultrasound emitting catheter for accelerating thrombolysis. Am Inst Ultrasound Med 1997; 16: 529–535
  • Porter TR, Kricsfeld D, Lof J, Everbach EC, Xie F. Effectiveness of transcranial and transthoracic ultrasound and microbubbles in dissolving intravascular thrombi. J Ultrasound Med 2001; 20: 1313–1325
  • Shaw GJ, Meunier JM, Cheng JY, Holland CK. Duty cycle dependence of ultrasound enhanced thrombolysis in an in-vitro human clot model. Ann Emerg Med 2005; 46: S27
  • Parikh DS, Tiukinhoy-Laing S, Huang SL, Holland CK, MacDonald RC, McPherson DD, Klegerman ME. Targeting of tissue plasminogen activator-loaded echogenic liposomes for site-specific thrombolysis. Arterioscler Thromb Vasc Biol 2006; 26: E102
  • Tata DB, Biglow J, Wu J, Tritton TR, Dunn F. Ultrasound-enhanced hydroxyl radical production from two clinically employed anti-cancer drugs, adriamycin and mitomycin C. Ultrason Sonochem 1996; 3: 39–45
  • Umemura SI, Yumita N, Nishigaki R, Umemura K. Sonochemical activation of hematoporphyrin: A potential modality for cancer treatment. Ultrason Symp 1989 Proc, IEEE 1989 1989; 955–960
  • Jeffers J, Feng RQ, Fowlkes JB, Brenner DE, Cain CA. Sonodynamic therapy: Activation of anticancer agents with ultrasound. Ultrason Symp 1991 Proc, IEEE 1991 1991; 1367–1370
  • Miyoshi N, Misik V, Fukuda M, Riesz P. Effect of gallium-porphyrin analogue ATX-70 on nitroxide formation from a cyclic secondary amine by ultrasound: On the mechanism of sonodynamic activation. Radiat Res 1995; 143: 194–202
  • Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001; 220: 640–646
  • Mesiwala AH, Farrell L, Wenzel HJ, Silbergeld DL, Crum LA, Winn HR, Mourad PD. High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med Biol 2002; 28: 389–400
  • Hynynen K, McDannold N, Martin H, Jolesz FA, Vykhodtseva N. The threshold for brain damage in rabbits induced by bursts of ultrasound in the presence of an ultrasound contrast agent (Optison (R)). Ultrasound Med Biol 2003; 29: 473–481
  • McDannold N, Vykhodtseva N, Jolesz FA, Hynynen K. MRI investigation of the threshold for thermally induced blood-brain barrier disruption and brain tissue damage in the rabbit brain. Magn Reson Med 2004; 51: 913–923
  • Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood–brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 2004; 30: 979–989
  • Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 2005; 24: 12–20
  • McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, Hynynen K. MRI-guided targeted blood–brain barrier disruption with focused ultrasound: Histological findings in rabbits. Ultrasound Med Biol 2005; 31: 1527–1537
  • Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N. Focal disruption of the blood–brain barrier due to 260-kHz ultrasound bursts: A method for molecular imaging and targeted drug delivery. J Neurosurg 2006; 105: 445–454
  • Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci USA 2006; 103: 11719–11723
  • Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 2006; 340: 1085–1090
  • McDannold N, Vykhodtseva N, Hynynen K. Targeted disruption of the blood-brain barrier with focused ultrasound: Association with cavitation activity. Phys Med Biol 2006; 51: 793–807
  • Bao SP, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997; 23: 953–959
  • Miller DL, Bao SP, Gies RA, Thrall BD. Ultrasonic enhancement of gene transfection in murine melanoma tumors. Ultrasound Med Biol 1999; 25: 1425–1430
  • Miller DL, Dou CY, Song JM. DNA transfer and cell killing in epidermoid cells by diagnostic ultrasound activation of contrast agent gas bodies in vitro. Ultrasound Med Biol 2003; 29: 601–607
  • Everbach EC, Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol 2000; 26: 1153–1160
  • Datta S, Coussios CC, McAdory LE, Tan J, Porter T, De Courten-Myers G, Holland CK. Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol 2006; 32: 1257–1267
  • Miller DL, Pislaru SV, Greenleaf JF. Sonoporation: Mechanical DNA delivery by ultrasonic cavitation. Som Cell Mol Genet 2002; 27: 115–134
  • Ohl CD, Arora M, Ikink R, De Jong N, Versluis M, Delius M, Lohse D. Sonoporation from jetting cavitation bubbles. Biophys J 2006; 91: 4285–4295
  • Wu J, Ross JP, Chui JF. Repairable sonoporation generated by microstreaming. The Journal of the Acoustical Society of America 2002; 111: 1460–1464
  • Fry WJ, Fry RB. Temperature changes produced in tissue during ultrasonic irradiation. J Acoust Soc Am 1953; 25: 6–11
  • Barnard JW, Fry WJ, Fry FJ, Krumins RF. Effects of high intensity ultrasound on the central nervous system of the cat. J Comp Neurol 1955; 103: 459–484
  • Fry WJ, Mosberg WH, Jr, Barnard JW, Fry FJ. Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 1954; 11: 471–478
  • Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 2005; 5: 321–327
  • Rooney JA, Gammell PM, Hestenes JD, Chin HP, Blankenhorn DH. Velocity and attenuation of sound in arterial tissues. J Acoust Soc Am 1982; 71: 462–466
  • Parker KJ. Ultrasonic attenuation and absorption in liver tissue. Ultrasound Med Biol 1983; 9: 363–369
  • Hill CR, Bamber JC, Haar GR. Physical principles of medical ultrasonics. John Wiley & Sons. 2004
  • Chivers RC, Hill CR. Ultrasonic attenuation in human tissue. Ultrasound Med Biol 1975; 2: 25–29
  • Hynynen K, Watmough DJ, Mallard JR. Design of ultrasonic transducers for local hyperthermia. Ultrasound Med Biol 1981; 7: 397–402
  • Hill CR. Optimum acoustic frequency for focused ultrasound surgery. Ultrasound Med Biol 1994; 20: 271–277
  • Hynynen K. The threshold for thermally significant cavitation in dog thigh muscle in vivo. Ultrasound Med Biol 1991; 17: 157–169
  • Holt RG, Roy RA. Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol 2001; 27: 1399–1412
  • Miller DL, Gies RA. The interaction of ultrasonic heating and cavitation in vascular bioeffects on mouse intestine. Ultrasound Med Biol 1998; 24: 123–128
  • Chen WS, Lafon C, Matula TJ, Vaezy S, Crum LA. Mechanisms of lesion formation in high intensity focused ultrasound therapy. Acoust Res Lett Online 2003; 4: 41–46
  • Farny CH. Identifying and monitoring the roles of cavitation in heating from high intensity focussed ultrasound. Boston University, Boston 2006
  • Leighton TG. The acoustic bubble. Academic Press, London 1994
  • Mellen RH. Ultrasonic spectrum of cavitation noise in water. J Acoust Soc Am 1954; 26: 356–360
  • Holt RG, Crum LA. Acoustically forced-oscillations of air bubbles in water—Experimental results. J Acoust Soc Am 1992; 91: 1924–1932
  • Hynynen K. The role of nonlinear ultrasound propagation during hyperthermia treatments. Med Phys 1991; 18: 1156–1163
  • Yang X, Church CC. A model for the dynamics of gas bubbles in soft tissue. J Acoust Soc Am 2005; 118: 3595–3606
  • Rabkin BA, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: Involvement of cavitation. Ultrasound Med Biol 2005; 31: 947–956
  • Damianou C, Hynynen K. The effect of various physical parameters on the size and shape of necrosed tissue volume during ultrasound surgery. J Acoust Soc Am 1994; 95: 1641–1649
  • Damianou CA, Hynynen K, Fan XB. Evaluation of accuracy of a theoretical-model for predicting the necrosed tissue volume during focused ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control 1995; 42: 182–187
  • Meaney PM, Cahill MD, Ter Haar GR. The intensity dependence of lesion position shift durig focused ultrasound surgery. Ultrasound Med Biol 2000; 26: 441–450
  • Bailey MR, Couret LN, Sapozhnikov OA, Khokhlova VA, ter Haar G, Vaezy S, Shi XG, Martin R, Crum LA. Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound Med Biol 2001; 27: 695–708
  • Khokhlova VA, Bailey MR, Reed JA, Cunitz BW, Kaczkowski PJ, Crum LA. Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom. J Acoust Soc Am 2006; 119: 1834–1848
  • Prosperetti A. Thermal effects and damping mechanisms in forced radial oscillations of gas-bubbles in liquids. J Acoust Soc Am 1977; 61: 17–27
  • Prosperetti A. Acoustic cavitation series. 2. Bubble phenomena in sound fields 1. Ultrasonics 1984; 22: 69–78
  • Minnaert M. On musical air bubbles and the sounds of running water. Philos Mag 1933; 16: 235–248
  • Holt RG, Roy RA. Bubble dynamics in therapeutic ultrasound. Bubble and particle dynamics in acoustic fields: Modern trends and applications, A Dionikov. Transworld Research Network, Kerala 2005; 108–229
  • Prosperetti A. Acoustic cavitation series 3. Bubble phenomena in sound fields 2. Ultrasonics 1984; 22: 115–124
  • Apfel RE. Acoustic cavitation. Methods Exp Phys (ed PD Edmonds) 1981; 19: 355–411
  • Yang XM, Church CC. A simple viscoelastic model for soft tissues in the frequency range 6–20 MHz. IEEE Trans Ultrason Ferroelectr Freq Control 2006; 53: 1404–1411
  • Keller JB, Miksis M. Bubble oscillations of large amplitude. J Acoust Soc Am 1980; 68: 628–633
  • Prosperetti A, Lezzi A. Bubble dynamics in a compressible liquid 1. 1st-order theory. J Fluid Mech 1986; 168: 457–478
  • Crum LA, Hansen GM. Generalized equations for rectified diffusion. J Acoust Soc Am 1982; 72: 1586–1592
  • Church CC. Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. J Acoust Soc Am 1988; 83: 2210–2217
  • Elder SA. Cavitation microstreaming. J Acoust Soc Am 1959; 31: 54–64
  • Nyborg WLM. Acoustic streaming. Physical Acoustics, WP Mason. Academic Press, New York 1965; IIB: 265–331
  • Miller DL. Particle gathering and microstreaming near ultrasonically activated gas-filled micropores. J Acoust Soc Am 1988; 84: 1378–1387
  • Wu J, Du G. Streaming generated by a bubble in an ultrasound field. J Acoust Soc Am 1997; 101: 1899–1907
  • Rooney JA. Acoustic streaming as a mechanism in treatment of suspensions. J Acoust Soc Am 1970; 48: 114–117
  • Rooney JA. Hemolysis near an ultrasonically pulsating gas bubble. Science 1970; 169: 869–871
  • Williams AR. Disorganization and disruption of mammalian and amoeboid cells by acoustic microstreaming. J Acoust Soc Am 1972; 52: 688–693
  • Harvey EN. Sonoluminescence and sonic chemiluminescence. J Am Chem Soc 1939; 61: 2392–2398
  • Suslick KS. Sonochemistry. Science 1990; 247: 1439–1445
  • Roy RA. Physical aspects of sonoluminescence from acoustic cavitation. Ultrason Sonochem 1994; 1: S5–S8
  • Hilgenfeldt S, Lohse D. The acoustics of diagnostic microbubbles: Dissipative effects and heat deposition. Ultrasonics 2000; 38: 99–104
  • Allen JS, Roy RA, Church CC. On the role of shear viscosity in mediating inertial cavitation from short-pulse, megahertz-frequency ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 1997; 44: 743–751
  • Atchley AA, Prosperetti A. The crevice model of bubble nucleation. J Acoust Soc Am 1989; 86: 1065–1084
  • Yu T, Wang G, Hu K, Ma P, Bai J, Wang Z. A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: A rabbit kidney study. Urol Res 2004; 32: 14–19
  • Umemura S, Kawabata K, Sasaki K. In vivo acceleration of ultrasonic tissue heating by microbubble agent. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52: 1690–1698
  • Kaneko Y, Maruyama T, Takegami K, Watanabe T, Mitsui H, Hanajiri K, Nagawa H, Matsumoto Y. Use of a microbubble agent to increase the effects of high intensity focused ultrasound on liver tissue. Eur Radiol 2005; 15: 1415–1420
  • McDannold NJ, Vykhodtseva NI, Hynynen K. Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits. Radiology 2006; 241: 95–106
  • Apfel RE. Vapor nucleation at a liquid-liquid interface. J Chem Phys 1971; 54: 62–63
  • Miller DL, Thomas RM. Ultrasound contrast agents nucleate inertial cavitation in-vitro. Ultrasound Med Biol 1995; 21: 1059–1065
  • Ophir J, Parker KJ. Contrast agents in diagnostic ultrasound. Ultrasound Med Biol 1989; 15: 319–333
  • De Jong N, Ten Cate FJ, Lancee CT, Roelandt JR, Bom N. Principles and recent developments in ultrasound contrast agents. Ultrasonics 1991; 29: 324–330
  • Church CC. The effects of an elastic solid-surface layer on the radial pulsations of gas-bubbles. J Acoust Soc Am 1995; 97: 1510–1521
  • Allen JS, May DJ, Ferrara KW. Dynamics of therapeutic ultrasound contrast agents. Ultrasound Med Biol 2002; 28: 805–816
  • Stride E, Saffari N. Theoretical and experimental investigation of the behaviour of ultrasound contrast agent particles in whole blood. Ultrasound Med Biol 2004; 30: 1495–1509
  • Poliachik SL, Chandler WL, Mourad PD, Bailey MR, Bloch S, Cleveland RO, Kaczkowski P, Keilman G, Porter T, Crum LA. Effect of high-intensity focused ultrasound on whole blood with and without microbubble contrast agent. Ultrasound Med Biol 1999; 25: 991–998
  • Coussios CC, Holland CK, Jakubowska L, Huang SL, MacDonald RC, Nagaraj A, McPherson DD. In vitro characterization of liposomes and Optison (R) by acoustic scattering at 3.5 MHz. Ultrasound Med Biol 2004; 30: 181–190
  • Miller DL, Williams AR. Nucleation and evolution of ultrasonic cavitation in a rotating exposure chamber. J Ultrasound Med 1992; 11: 407–412
  • Farny CH, Wu TM, Holt RG, Murray TW, Roy RA. Nucleating cavitation from laser-illuminated nano-particles. Acoust Res Lett Online 2005; 6: 138–143
  • Miller DL, Kripfgans OD, Fowlkes JB, Carson PL. Cavitation nucleation agents for nonthermal ultrasound therapy. J Acoust Soc Am 2000; 107: 3480–3486
  • Xu Z, Fowlkes JB, Cain CA. A new strategy to enhance cavitational tissue erosion using a high-intensity, initiating sequence. IEEE Trans Ultrason Ferroelectr Freq Control 2006; 53: 1412–1424
  • Holt RG, Roy RA, Edson PE, Yang XM. Bubbles and HIFU: The good, the bad and the ugly. International Symposium of Therapeutic Ultrasound 2003, MA Andrew, LA Crum, S Vaezy. American Institute of Physics, Seattle 2003; 120–131
  • Hilgenfeldt S, Lohse D, Zomack M. Sound scattering and localized heat deposition of pulse-driven microbubbles. J Acoust Soc Am 2000; 107: 3530–3539
  • Edson PL. The role of acoustic cavitation in enhanced ultrasound-induced heating in a tissue-mimicking phantom. Boston University, Boston 2001
  • Yang XM, Roy RA, Holt RG. Bubble dynamics and size distributions during focused ultrasound insonation. J Acoust Soc Am 2004; 116: 3423–3431
  • Eller A, Flynn HG. Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 1965; 37: 493–503
  • Eller AI. Growth of bubbles by rectified diffusion. J Acoust Soc Am 1969; 46: 1246–1250
  • Crum LA, Hansen GM. Growth of air bubbles in tissue by rectified diffusion. Phys Med Biol 1982; 27: 413–417
  • Yang XM. Investigation of bubble dynamics and heating during focused ultrasound insonation in tissue-mimicking materials. Boston University, Boston 2003
  • Miller DL, Thomas RM. Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock-waves. Ultrasound Med Biol 1995; 21: 249–257
  • Miller DL, Creim JA, Gies RA. Heating vs. cavitation in the induction of mouse hindlimb paralysis by ultrasound. Ultrasound Med Biol 1999; 25: 1145–1150
  • Sokka SD, King R, Hynynen K. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol 2003; 48: 223–241
  • Sokka SD, Vykhodtseva N, Hynynen K. Cavitation-enhanced ultrasound heating in vivo: Therapy protocols, mechanisms, and acoustic and MRI monitoring. J Acoust Soc Am 2006; 119: 3227
  • Huang J, Holt RG, Cleveland RO, Roy RA. Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms. J Acoust Soc Am 2004; 116: 2451–2458
  • Lafon C, Zderic V, Noble ML, Yuen JC, Kaczkowski PJ, Sapozhnikov OA, Chavrier F, Crum LA, Vaezy S. Gel phantom for use in high-intensity focused ultrasound dosimetry. Ultrasound Med Biol 2005; 31: 1383–1389
  • Jiang P, Everbach EC, Apfel RE. Applications of mixture laws for predicting the compositions of tissue phantoms. Ultrasound Med Biol 1991; 17: 829–838
  • ANSI technical report: Bubble detection and cavitation monitoring. Mellive, NY, 2002. Standards Secretariat, Acoustical Society of America
  • Leighton TG. A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: Review of cavitation monitoring techniques. University of Southampton—Institute of Sound and Vibration Research. 1997
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1948; 1: 93–122
  • Hynynen K. Demonstration of enhanced temperature elevation due to nonlinear propagation of focused ultrasound in dogs thigh in vivo. Ultrasound Med Biol 1987; 13: 85–91
  • Clarke RL, Bush NL, Ter Haar GR. The changes in acoustic attenuation due to in vitro heating. Ultrasound Med Biol 2003; 29: 127–135
  • Zderic V, Keshavarzi A, Andrew MA, Vaezy S, Martin RW. Attenuation of porcine tissues in vivo after high-intensity ultrasound treatment. Ultrasound Med Biol 2004; 30: 61–66
  • Hao Y, Prosperetti A. The dynamics of vapor bubbles in acoustic pressure fields. Phys Fluid 1999; 11: 2008–2019
  • Prosperetti A, Hao Y. Vapor bubbles in flow and acoustic fields. Microgravity transport processes in fluid, thermal, biological, and materials sciences, SS Sadhal. New York Academy of Sciences, New York 2002; 328–347
  • Konofagou EE, Thierman J, Karjalainen T, Hynynen K. The temperature dependence of ultrasound-stimulated acoustic emission. Ultrasound Med Biol 2002; 28: 331–338
  • Vaezy S, Shi XG, Martin RW, Chi E, Nelson PI, Bailey MR, Crum LA. Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging. Ultrasound Med Biol 2001; 27: 33–42
  • Chan AH, Fujimoto VY, Moore DE, Martin RW, Vaezy S. An image-guided high intensity focused ultrasound device for uterine fibroids treatment. Med Phys 2002; 29: 2611–2620
  • Seo J, Tran BC, Hall TL, Fowlkes JB, Abrams GD, O’Donnell M, Cain CA. Evaluation of ultrasound tissue damage based on changes in image echogenicity in canine kidney. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52: 1111–1120
  • Held RT, Zderic V, Nguyen TN, Vaezy S. Annular phased-array high-intensity focused ultrasound device for image-guided therapy of uterine fibroids. IEEE Trans Ultrason Ferroelectr Freq Control 2006; 53: 335–348
  • Coussios CC, Farny CH, Thomas CR, Cleveland RO, Holt RG, Roy RA. Cavitation detection during and following HIFU exposure in vitro. J Acoust Soc Am 2004; 115: 2448
  • Rabkin BA, Zderic V, Crum LA, Vaezy S. Biological and physical mechanisms of HIFU-induced hyperecho in ultrasound images. Ultrasound Med Biol 2006; 32: 1721–1729
  • Thomas CR, Farny CH, Coussios CC, Roy RA, Holt RG. Dynamics and control of cavitation during high-intensity focused ultrasound application. Acoust Res Lett Online 2005; 6: 182–187
  • Chapelon JY, Dupenloup F, Cohen H, Lenz P. Reduction of cavitation using pseudorandom signals [therapeutic US]. IEEE Trans Ultrason Ferroelectr Freq Control 1996; 43: 623–625
  • Xu Z, Ludomirsky A, Eun LY, Hall TL, Tran BC, Fowlkes JB, Cain CA. Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51: 726–736
  • Sokka SD, Gauthier TP, Hynynen K. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation. Phys Med Biol 2005; 50: 2167–2179
  • Xu Z, Fowlkes JB, Rothman ED, Levin AM, Cain CA. Controlled ultrasound tissue erosion: The role of dynamic interaction between insonation and microbubble activity. J Acoust Soc Am 2005; 117: 424–435
  • Lo AH, Kripfgans OD, Carson PL, Fowlkes JB. Spatial control of gas bubbles and their effects on acoustic fields. Ultrasound Med Biol 2006; 32: 95–106
  • Roberts WW, Hall TL, Ives K, Wolf JS, Fowlkes JB, Cain CA. Pulsed cavitational ultrasound: A noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol 2006; 175: 734–738

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.