2,433
Views
101
CrossRef citations to date
0
Altmetric
Original

Clinical applications of focused ultrasound—The brain

&
Pages 193-202 | Received 13 Oct 2006, Accepted 01 Jun 2007, Published online: 09 Jul 2009

References

  • Lynn JG, Zwemer RL, Chick AJ, Miller AE. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol 1942; 26: 179–193
  • Lynn JG, Putnam TJ. Histology of cerebral lesions produced by focused ultrasound. Am J Path 1944; 20: 637–652
  • Wall PD, Fry WJ, Stephens R, Tucker D, Lettvin JY. Changes produced in the central nervous system by ultrasound. Science 1951; 114: 686–687
  • Fry WJ, Mosberg W, Barnard JW, Fry FJ. Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 1954; 11: 471–478
  • Fry WJ, Barnard JW, Fry FJ, Krumins RF, Brennan JF. Ultrasonic lesions in the mammalian central nervous system. Science 1955; 122: 517–518
  • Fry WJ, Barnard JW, Fry FJ. Ultrasonically produced localized selective lesions in the central nervous system. Am J Phys Med 1955; 34: 413–423
  • Barnard JW, Fry WJ, Fry FJ, Brennan JF. Small localized ultrasonic lesions in the white and gray matter of the cat brain. AMA Arch Neurol 1956; 75: 15–35
  • Barnard JW, Fry WJ, Fry FJ, Brennan JF. Small localized ultrasonic lesions in the white and gray matter of the cat brain. Arch Neurol Psychiatry 1956; 75: 15–35
  • Bakay L, Hueter TF, Ballantine HT, Sosa D. Ultrasonically produced changes in the blood-brain barrier. Arch Neurol 1956; 76: 457–467
  • Lele PP. A simple method for production of trackless focal lesions with focused ultrasound: Physical factors. J Physiol 1962; 160: 494–512
  • Lele PP. Production of deep focal lesions by focused ultrasound—current status. Ultrasonics 1967; 5: 105–122
  • Lele PP, Pierce AD. The thermal hypothesis of the mechanism of ultrasonic focal destruction in organised tissues. Interaction of ultrasound and biological tissues. Bureau of Radiological Health, Washington, DC 1973; 121–128, FDA 73-8008 BRH/DBE
  • Robinson TC, Lele PP. An analysis of lesion development in the brain and in plastic by high-intensity focused ultrasound at low-megaherz frequencies. J Acoust Soc Am 1972; 51: 1333–1351
  • Lele PP. Threshold and mechanisms of ultrasonic damage to organized animal tissues. Proceedings of a Symposium on Biological effects and characterization of ultrasound sources, Rockville, MDUSA, June 1–3, 1977, 224–239
  • Lele PP. Effects of ultrasound on “solid” mammalian tissues and tumors in vivo. Ultrasound: Medical applications, biological effects and hazard potential, MH Repacholi, M Grondolfo, A Rindi. Plenum Pub. Corp., New York 1987; 273–306
  • Vykhodtseva NI, Gavrilov LR, Mering TA, Iamshchikova NG. [Use of focused ultrasound for local destruction of different brain structures] Primenenie fokusirovannogo ul'trazvuka dlia lokal'nykh razrushenii razlichnykh struktur golovnogo mozga. Zh Nevropatol Psikhiatr 1976; 76: 1810–1816
  • Fry WJ, Fry FJ. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron 1960; ME-7: 166–181
  • Fry FJ, Kossoff G, Eggleton RC, Dunn F. Threshold ultrasonic dosages for structural changes in the mammalian brain. J Acoust Soc Am 1970; 48: 1413–1417
  • Dunn F, Lohnes JE, Fry FJ. Frequency dependence of threshold ultrasonic dosages for irreversible structural changes in mammalian brain. J Acoust Soc Am 1975; 58: 512–514
  • Heimburger RF. Ultrasound augmentation of central nervous system tumor therapy. Indiana Med 1985; 78: 469–476
  • Fry FJ, Sanghvi NT, Morris RF, Smithson S, Atkinson L, Dines K, Franklin T, Hastings J, et al. A focused ultrasound system for tissue volume ablation in deep seated brain sites. IEEE 1986 Ultrasonics Symp Proc (Cat.No.86CH2375-4), 1001. 1986
  • Guthkelch AN, Carter LP, Cassady JR, Hynynen K, Iacono RP, Johnson PC, Obbens EAMT, Roemer RB, Seeger JF, Shimm DS, Stea B, et al. Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: Results of a phase I trial. J Neurooncol 1991; 10: 271–284
  • Anhalt DP, Hynynen K, Roemer RB. Patterns of changes of tumour temperatures during clinical hyperthermia: Implications for treatment planning, evaluation and control. Effect of phase errors on field patterns generated by an ultrasound phased-array hyperthermia applicator. Int J Hyperthermia 1995; 11: 425–436
  • McDannold N, Moss M, Killiany R, Rosene DL, King RL, Jolesz FA, Hynynen K, et al. MRI-guided focused ultrasound surgery in the brain: Tests in a primate model. Magn Reson Med 2003; 49: 1188–1191
  • Ram Z, Cohen ZR, Harnof S, Tal S, Faibel M, Nass D, Maier SE, Hadoni M, Mardor Y, et al. Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 2006; 59: 949–955
  • Park JW, Jung S, Junt TY, Lee MC. Focused ultrasound surgery for the treatment of recurrent anaplastic astrocytoma: A preliminary report. Therapeutic ultrasound. 5th International Symposium on Therapeutic Ultrasound. 2006, GT Clement, NJ McDannold, K Hynynen. American Institute of Physics, New York, 238–240
  • Fry FJ. Transkull transmission of an intense focused ultrasonic beam. Ultrasound Med Biol 1977; 3: 179–184
  • Fry FJ, Goss SA. Further studies of the transkull transmission of an intense focused ultrasonic beam: Lesion production at 500 kHz. Ultrasound Med Biol 1980; 6: 33–38
  • Fry FJ, Goss SA, Patrick JT. Transkull focal lesions in cat brain produced by ultrasound. J Neurosurg 1981; 54: 659–663
  • Do-Huu JP, Hartemann P. Annular array transducer for deep acoustic hyperthermia. IEEE Ultrasonics Symp 1981; 81CH1689-9: 705–710
  • Ocheltree KB, Benkeser PJ, Frizzell LA, Cain CA. An ultrasonic phased array applicator for hyperthermia. IEEE Trans Sonics Ultras 1984; SU-31: 526–531
  • Benkeser PJ, Frizzell LA, Ocheltree KB, Cain CA. A tapered phased array ultrasound transducer for hyperthermia treatment. IEEE Trans Ultrason Ferroelectr Freq Control 1987; UFFC-34: 446–453
  • Frizzell LA, Benkeser PJ, Ocheltree KB, Cain CA. Ultrasound phased arrays for hyperthermia treatment. IEEE Ultrasonics Symp 1985; 2: 931–935
  • Cain CA, Umemura SA. Concentric-ring and sector vortex phased array applicators for ultrasound hyperthermia therapy. Effect of phase errors on field patterns generated by an ultrasound phased-array hyperthermia applicator. IEEE Trans Microwave Theory Tech 1986; MTT-34: 542–551
  • Ebbini ES, Umemura SI, Ibbini M, Cain C. A cylindrical- section ultrasound phased array applicator for hyperthermia cancer therapy. Effect of phase errors on field patterns generated by an ultrasound phased-array hyperthermia applicator. IEEE Trans Ultrason Ferroelectr Freq Cont 1988; 35: 561–572
  • Diederich C, Hynynen K. The feasibility of using electrically focussed ultrasound arrays to induce deep hyperthermia via body cavities. IEEE Trans Ultrason Ferroelectr Freq Cont 1991; 38: 207–219
  • Fan X, Hynynen K. Control of the necrosed tissue volume during noninvasive ultrasound surgery using a 16 element phased array. Med Phys 1995; 22: 297–308
  • Daum DR, Hynynen K. A 256 element ultrasonic phased array system for treatment of large volumes of deep seated tissue. IEEE Trans Ultrason Ferroelectr Freq Cont 1999; 46: 1254–1268
  • Daum DR, Buchanan MT, Fjield T, Hynynen K. Design and evaluation of a feedback based phased array system for ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Cont 1998; 45: 431–438
  • Thomas J-L, Fink MA. UItrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: Application to transskull therapy. IEEE Trans Ultrason Ferroelectr Freq Cont 1996; 43: 1122–1129
  • Hynynen K, Jolesz FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 1998; 24: 275–283
  • Smith SW, Trahey G.E, von Ramm OT. Phased array ultrasound imaging through planar tissue layers. Ultrasound Med Biol (UK) 1986; 12: 229–243
  • Sun J, Hynynen K. Focusing of therapeutic ultrasound through a human skull: A numerical study. J Acoust Soc Am 1998; 104: 1705–1715
  • Sun J, Hynynen K. The potential of transskull ultrasound therapy and surgery using the maximum available skull surface area. J Acoust Soc Am 1999; 105: 2519–2527
  • Clement GT, White J, Hynynen K. Investigation of a large-area phased array for focused ultrasound surgery through the skull. Phys Med Biol 2000; 45: 1071–1083
  • Clement GT, Sun J, Giesecke T, Hynynen K. A hemisphere array for non-invasive ultrasound brain therapy and surgery. Phys Med Biol 2000; 45: 3707–3719
  • Tanter M, Thomas J-L, Fink MA. Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull. J Acoust Soc Am 1998; 103: 2403–2410
  • Clement GT, Hynynen K. Micro-receiver guided transcranial beam steering. IEEE Trans Ultrason Ferroelectr Freq Cont 2002; 49: 447–453
  • Clement GT, Hynynen K. A noninvasive method for focusing ultrasound through the human skull. Phys Med Biol 2002; 47: 1219–1236
  • Aubry JF, Tanter M, Pernot M, Thomas J-L, Fink MA. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 2003; 113: 84–93
  • Clement GT, Hynynen K. Correlation of ultrasound phase with physical skull properties. Ultrasound Med Biol 2002; 28: 617–624
  • Connor CW, Clement GT, Hynynen K. A unified model for the speed of sound in cranial bone based on genetic algorithm optimization. Phys Med Biol 2002; 47: 3925–3944
  • Clement GT, Hynynen KH. Criteria for the design and calibration of large area arrays for transskull ultrasound surgery and therapy. IEEE 2000 Ultrasonics Symp 2000; 2: 1243–1246
  • Clement GT, White PJ, King RL, McDannold N, Hynynen K. A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy. J Ultrasound Med 2005; 24: 1117–1125
  • Hynynen K, Darkazanli A, Unger E, Schenck JF. MRI-guided noninvasive ultrasound surgery. Med Phys 1993; 20: 107–115
  • Darkazanli A, Hynynen K, Unger E, Schenck JF. On-line monitoring of ultrasound surgery with MRI. J Mag Res Imag 1993; 3: 509–514
  • Cline HE, Hynynen K, Hardy CJ, Watkins RD, Schenck JF, Jolesz FA. MR temperature mapping of focused ultrasound surgery. Magn Reson Med 1994; 30: 98–106
  • Hynynen K, Freund WR, Cline HE, Chung AH, Watkins RD, Vetro JP, Jolesz FA, et al. A clinical noninvasive MRI monitored ultrasound surgery method. Radiographics 1996; 16: 185–195
  • Hynynen K, Chung A, Fjield T, Buchanan MT, Daum D, Colucci V, Lopath, Jolesz F, et al. Feasibility of using ultrasound phased arrays for MRI monitored noninvasive surgery. IEEE Trans Ultrason Ferroelectr Freq Cont 1996; 43: 1043–1053
  • Hynynen K, Clement GT, McDannold N, Vykhodtseva N, King R, White PJ, Vitek S, Jolesz FA, et al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: A preliminary rabbit study with ex vivo human skulls. Magn Reson Med 2004; 52: 100–107
  • Connor CW, Hynynen K. Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery. IEEE Trans Biomed Eng 2004; 51: 1693–1706
  • White J, Clement GT, Hynynen K. Transcranial ultrasound focus reconstruction with phase and amplitude correction. IEEE Trans Ultrason Ferroelectr Freq Cont 2005; 52: 1518–1522
  • Hynynen K, Vykhodtseva NI, Chung A, Sorrentino V, Colucci V, Jolesz FA. Thermal effects of focused ultrasound on the brain: Determination with MR Imaging. Radiology 1997; 204: 247–253
  • Pernot M, Aubry JF, Tanter M, Thomas JL, Fink M. High power transcranial beam steering for ultrasonic brain therapy. Phys Med Biol 2003; 48: 2577–2589
  • Pernot M, Aubry JF, Tanter M, Boch AL, Kujas M, Fink M. Adaptive focusing for ultrasonic transcranial brain therapy: First in vivo investigation on 22 sheep. AIP Conf Proc 2005; 754: 174–177
  • Marquet F, Aubry JF, Tanter M, Fink M. Non invasive transcranial brain therapy guided by CT scans: An in vivo monkey study. Presented in the 6th ISTU meeting. OxfordUK, 2006
  • Hynynen K, McDannold N, Clement G, Jolesz FA, Zadicario E, Killiany R, Moore T, Rosen D, et al. Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain—A primate study. Eur J Radiol 2006; 59: 149–156
  • Hynynen K. The threshold for thermally significant cavitation in dog's thigh muscle in vivo. Ultrasound Med Biol 1991; 17: 157–169
  • Holt RG, Roy RA. Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol 2003; 27: 1399–1412
  • Sokka SD, King R, Hynynen K. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol 2003; 48: 223–241
  • Sokka SD, Gauthier TP, Hynynen K. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation. Phys Med Biol 2005; 50: 2167–2179
  • Tran BC, Seo J, Hall TL, Fowlkes JB, Cain CA. Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Cont 2003; 50: 1296–1304
  • McDannold NJ, Vykhodtseva NI, Hynynen K. Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits. Radiology 2006; 241: 95–106
  • Vykhodtseva NI, Koroleva VI. [Changes in the steady potential in various structures of the rat brain induced by focused ultrasound] Sdvigi postoiannogo potentsiala v razlichnykh strukturakh golovnogo mozga krysy pri deistvii fokusirovannogo ul′trazvuka. Dokl Akad Nauk SSSR 1986; 287: 248–251
  • Akiyama M, Ishibashi T, Yamada T, Furuhata H. Low-frequency ultrasound penetrates the cranium and enhances thrombolysis in vitro. Neurosurgery 1998; 43: 828–832
  • Alexandrov AV, Demchuk AM, Felberg RA, Christou I, Barber PA, Burgin WS, Malkoff M, Wojner AW, Grotta JC, et al. High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial Doppler monitoring. Stroke 2000; 31: 610–614
  • Frenkel V, Oberoi J, Stone MJ, Park M, Deng C, Wood BJ, Neeman Z, Horne M, III, Li KC, et al. Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model. Radiology 2006; 239: 86–93
  • Moonen C, Madio D, de Zwart J, Olson A, DesPres D, van Gelderen PE, Mandel M, Voisin P, Canioni P, Vekris A, et al. MRI-guided focused ultrasound as a potential tool for control of gene therapy. Eur Radiol 1997; 7: 1165
  • Silcox CE, Smith RC, King R, McDannold N, Bromley P, Walsh K, et al. MRI-guided ultrasonic heating allows spatial control of exogenous luciferase in canine prostate. Ultrasound Med Biol 2005; 31: 965–970
  • Hynynen K, McDannold N, Vykhodtseva NI, Jolesz FA. Noninvasive MR image guided focal opening of the blood–brain barrier. Radiology 2001; 220: 640–646
  • McDannold N, Vykhodtseva N, Hynynen K. Targeted disruption of the blood-brain barrier with focused ultrasound: Association with cavitation activity. Phys Med Biol 2006; 51: 793–807
  • Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 2005; 24: 12–20
  • Sheikov N, McDannold N, Jolesz F, Zhang YZ, Tam K, Hynynen K. Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood–brain barrier. Ultrasound Med Biol 2006; 32: 1399–1409
  • Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci USA 2006; 103: 11719–11723
  • Treat LH, McDannold NJ, Vykhodtseva NI, Zhang Y, Tam K, Hynynen K (2006) Targeted drun delivery to the brain by MRI-guided focused ultrasound. Therapeutic ultrasound: 5th International Symposium on Therapeutic Ultrasound. 2005, GT Clement, NJ McDannold, K Hynynen. American Institute of Physics, 266–270

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.