519
Views
31
CrossRef citations to date
0
Altmetric
Original

Online feedback focusing algorithm for hyperthermia cancer treatment

, , , &
Pages 539-554 | Received 30 Jul 2007, Accepted 09 Sep 2007, Published online: 09 Jul 2009

References

  • Ahn K-J, Lee CK, Choi EK, Griffin R, Song CW, Park HJ. Cytotoxicity of perillyl alcohol against cancer cells is potentiated by hyperthermia. International Journal of Radiation Oncology Biology Physics 2003; 57(3)813–819
  • Madsen SJ, Sun C-H, Tromberg BJ, Ni J, Hirschberg H. Addition of ionizing radiation or hyperthermia enhances PDT efficacy in glioma spheroids. Photonic Therapeutics and Diagnostics. United States: International Society for Optical Engineering, San Jose, CA Jan 22–25 , 2005; 495–506, Bellingham, WA 98227-0010, United States; 2005
  • Jones EL, Oleson JR, Prosnitz LR, Samulski TV, Vujaskovic Z, Yu DH, Sanders LL, Dewhirst MW. Randomized trial of hyperthermia and radiation for superficial tumors. Journal of Clinical Oncology 2005; 23(13)3079–3085
  • Thrall DE, LaRue SM, Yu DH, Samulski T, Sanders L, Case B, Rosner G, Azuma C, Poulson J, Pruitt AF, et al. Thermal dose is related to duration of local control in canine sarcomas treated with thermoradiotherapy. Clinical Cancer Research 2005; 11(14)5206–5214
  • Jones E, Thrall D, Dewhirst MW, Vujaskovic Z. Prospective thermal dosimetry: The key to hyperthermia's future. International Journal of Hyperthermia 2006; 22(3)247–253
  • Brizel DM, Scully SP, Harrelson JM, et al. Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Research 1996; 56: 5347–5350
  • Falk MH, Issels RD. Hyperthermia in oncology. International Journal of Hyperthermia 2001; 17(1)1–18
  • Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, Dewhirst MW. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: Importance of triggered drug release. Cancer Research 2000; 60(24)6950–6957
  • Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Research 2000; 60(5)1197–1201
  • Ponce AM, Vujaskovic Z, Yuan F, Needham D, Dewhirst MW. Hyperthermia mediated liposomal drug delivery. International Journal of Hyperthermia 2006; 22(3)205–213
  • Kong G, Dewhirst MW. Hyperthermia and liposomes. International Journal of Hyperthermia 1999; 15(5)345–370
  • Daum DR, Smith NB, King R, Hynynen KH. In vivo demonstration of noninvasive thermal surgery of the liver and kidney using an ultrasonic phased array. Ultrasound in Medicine and Biology 1999; 25(7)1087–1098
  • Stauffer PR, Goldberg SN. Introduction: Thermal ablation therapy. International Journal of Hyperthermia 2004; 20(7)671–678
  • Stauffer PR. Evolving technology for thermal therapy of cancer. International Journal of Hyperthermia 2005; 21(8)731–744
  • Goss SA, Johnston RL, Dunn F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. Journal of the Acoustical Society of America 1978; 64(2)423–457
  • Song CW, Lokshina A, Rhee JG, Patten M, Levitt SH. Implication of blood flow in hyperthermia treatment of tumors. IEEE Transactions on Biomedical Engineering 1984; 31: 9–16
  • Cheng K-S, Roemer RB. Blood perfusion and thermal conduction effects in Gaussian beam, minimum time single-pulse thermal therapies. Medical Physics 2005; 32(2)311–317
  • Perez CA, Gillespie B, Pajak T, Hornback NB, Emami B, Rubin P. Quality assurance problems in clinical hyperthermia and their impact on therapeutic outcome: A report by the Radiation Therapy Oncology Group. International Journal of Radiation Oncology. Biology and Physics 1989; 16: 537–558
  • Emami B, Scott C, Perez CA, Asbell S, Swift P, Grigsby P, Montesano A, Rubin P, Curran W, Delrowe J, et al. Phase III study of interstitial thermoradiotherapy compared with interstitial radiotherapy alone in the treatment of recurrent or persistent human tumors: A prospectively controlled randomized study by the Radiation Therapy Oncology Group. International Journal of Radiation Oncology Biology Physics 1996; 34(5)1097–1104
  • Hand JW, Machin D, Vernon CC, Whaley JB. Analysis of thermal parameters obtained during Phase III trials of hyperthermia as an adjunct to radiotherapy in the treatment of breast carcinoma. International Journal of Hyperthermia 1997; 13: 343–364
  • Gellermann J, Hildebrandt B, Issels R, Ganter H, Wlodarczyk W, Budach V, Felix R, Tunn PU, Reichardt P, Wust P. Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia  – Correlation with response and direct thermometry. Cancer 2006; 107(6)1373–1382
  • Gellermann J, Weihrauch M, Cho CH, Wlodarczyk W, Fahling H, Felix R, Budach V, Weiser M, Nadobny J, Wust P. Comparison of MR-thermography and planning calculations in phantoms. Medical Physics 2006; 33(10)3912–20
  • Wust P, Cho CH, Hildebrandt B, Gellermann J. Thermal monitoring: Invasive, minimal-invasive and non-invasive approaches. International Journal of Hyperthermia 2006; 22(3)255–262
  • Hutchinson E, Dahleh M, Hynynen KH. The feasibility of MRI feedback control for intracavitary phased array hyperthermia treatments. International Journal of Hyperthermia 1998; 14(1)39–56
  • Vanne A, Hynynen K. MRI feedback temperature control for focused ultrasound surgery. Physics in Medicine and Biology 2003; 48(1)31–43
  • Mougenot C, Salomir R, Palussiere J, Grenier N, Moonen CTW. Automatic spatial and temporal temperature control for MR-guided focused ultrasound using fast 3D MR thermometry and multispiral trajectory of the focal point. Magnetic Resonance in Medicine 2004; 52(5)1005–1015
  • Boag A, Leviatan Y (1988) Optimal excitation of multiapplicator systems for deep regional hyperthermia. 1988 IEEE MTT-S International Microwave Symposium Digest: Microwaves  – Past, Present and Future, New York, NYUSA, May 25–27, 1988. Publ by IEEE, Piscataway, NJUSA, 307–310
  • Kremer J, Louis AK. On the mathematical foundations of hyperthermia therapy. Mathematical Methods in the Applied Sciences 1990; 13(6)467–479
  • Bohm M, Kremer J, Louis AK. Efficient algorithm for computing optimal control of antennas in hyperthermia. Surveys on Mathematics for Industry 1993; 3(4)233–251
  • Das SK, Clegg ST, Samulski TV. Computational techniques for fast hyperthermia temperature optimization. Medical Physics 1999; 26(2)319–328
  • Kroeze H, Van Vulpen M, De Leeuw AAC, Van de Kamer JB, Lagendijk JJW. Improvement of absorbing structures used in regional hyperthermia. International Journal of Hyperthermia 2003; 19(6)598–616
  • Seebass M, Beck R, Gellermann J, Nadobny J, Wust P. Electromagnetic phased arrays for regional hyperthermia: Optimal frequency and antenna arrangement. International Journal of Hyperthermia 2001; 17(4)321–336
  • Kroeze H, Van de Kamer JB, De Leeuw AAC, Lagendijk JJW. Regional hyperthermia applicator design using FDTD modelling. Physics in Medicine and Biology 2001; 46(7)1919–1935
  • Das SK, Clegg ST, Samulski TV. Electromagnetic thermal therapy power optimization for multiple source applicators. International Journal of Hyperthermia 1999; 15(4)291–308
  • Paulsen KD, Geimer S, Tang J, Boyse WE. Optimization of pelvic heating rate distributions with electromagnetic phased arrays. International Journal of Hyperthermia 1999; 15(3)157–186
  • Siauve N, Nicolas L, Vollaire C, Marchal C. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method. International Journal of Hyperthermia 2004; 20(8)815–833
  • Kok HP, Van Haaren PMA, Van De Kamer JB, Wiersma J, Van Dijk JDP, Crezee J. High-resolution temperature-based optimization for hyperthermia treatment planning. Physics in Medicine and Biology 2005; 50(13)3127–3141
  • Kohler T, Maass P, Wust P, Seebass M. A fast algorithm to find optimal controls of multiantenna applicators in regional hyperthermia. Physics in Medicine and Biology 2001; 46(9)2503–2514
  • Kowalski ME, Behnia B, Webb AG, Jin J-M. Optimization of electromagnetic phased-arrays for hyperthermia via magnetic resonance temperature estimation. IEEE Transactions on Biomedical Engineering 2002; 49(11)1229–1241
  • Kowalski ME, Jin J-M. A temperature-based feedback control system for electromagnetic phased-array hyperthermia: Theory and simulation. Physics in Medicine and Biology 2003; 48(5)633–651
  • Cheng K-S, Das SK (2006) A simple and efficient feedback controller that adaptively correct the focal positions of ultrasound or electromagnetic wave heating applicators for non-invasive thermal treatments. 2006 Annual Meeting of the Society for Thermal Medicine, Bethesda, MarylandU.S.A., 2006
  • Cheng K-S, Stakhursky V, Das SK (2007) Magnetic resonance image guided real-time controller for hyperthermia cancer treatment. Duke Cancer Center Annual Meeting, Durham, NCU.S.A., 2007. Duke Cancer Compresensive Center, Durhm, NCUSA
  • Cheng K-S, Stakhursky V, Das SK. Hyperthermia cancer treatment using magnetic resonance temperature images for feedback control. World Conference on Interventional Oncology (WCIO); 2007. Washington, D.C.U.S.A. 2007
  • Van de Kamer JB, De Leeuw AAC, Kroeze H, Lagendijk JJW. Quasistatic zooming for regional hyperthermia treatment planning. Physics in Medicine and Biology 2001; 46(4)1017–1030
  • Jackson JD. Classical electrodynamics. 3rd (August 10, 1998) ed. John Wiley  & Sons, Inc., New York 1998
  • Rugh WJ. Linear system theory. 2nd ed. Prentice Hall, Upper Saddle River, N.J 1996
  • Bowman HF, Curley MG, Newman WH, Summit SC, Chang S, Hansen J, Herman TS, Svensson GK (1989) Effective thermal conductivity: Will it permit quantitative hyperthermia treatment planning?. Images of the Twenty-First Century. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No. 89CH2770-6), Seattle, WAUSA, 9–12 Nov, 1989. IEEE, 6–8
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology 1948; 1: 93–122
  • Roemer RB, Fletcher AM, Cetas TC. Obtaining local SAR and blood perfusion data from temperature measurements: Steady state and transient techniques compared. International Journal of Radiation Oncology Biology Physics 1985; 11(8)1539–1550
  • Roemer RB. The local tissue cooling coefficient: A unified approach to thermal washout and steady-state ‘perfusion’ calculation. International Journal of Hyperthermia 1990; 6: 421–430
  • Kolios MC, Worthington AE, Sherar MD, Hunt JW. Experimental evaluation of two simple thermal models using transient analysis. Physics in Medicine and Biology 1998; 43(11)3325–3340
  • Wan H, Aarsvold J, O’Donnell N, Cain H. Thermal dose optimization for ultrasound tissue ablation. IEEE Transactions on Ultrasonics, Ferroelectrics. and Frequency Control 1999; 46(4)913–928
  • Kolios MC, Worthington AE, Holdsworth DW, Sherar MD, Hunt JW. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating. Physics in Medicine and Biology 1999; 44(6)1479–1497
  • Cheng K-S, Roemer RB (2003) An analytical evaluation of the optimal thermal dose delivery parameters for thermal therapies. 2003 ASME Summer Heat Transfer Conference (HT2003); 2003, Las Vegas, NevadaUSA, Jul 21–23, 2003. American Society of Mechanical Engineers, 805–808
  • Cheng K-S, Roemer RB. Optimal power deposition patterns for ideal HTT/Hyperthermia treatments. International Journal of Hyperthermia 2004; 20(1)57–72
  • Cheng K-S, Roemer RB. Closed-form solution for the thermal dose delivered during single pulse thermal therapies. International Journal of Hyperthermia 2005; 21(3)215–230
  • Das SK, Jones EA, Samulski TV. A method of MRI-based thermal modelling for a RF phased array. International Journal of Hyperthermia 2001; 17(6)465–482
  • Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues. III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology 1996; 41(11)2271–2293
  • Wust P, Gellermann J, Beier J, Wegner S, Troger J, Trtjgert J, Stalling D, Oswald H, Hege HC, Deuflhard P, et al. Evaluation of segmentation algorithms for generation of patient models in radiofrequency hyperthermia. Physics in Medicine and Biology 1998; 43(11)3295–3307
  • Piket-May MJ, Taflove A, Lin W-C, Katz DS, Sathiaseelan V, Mittal BB. Initial results for automated computational modeling of patient-specific electromagnetic hyperthermia. IEEE Transactions on Biomedical Engineering 1992; 39(3)226–237
  • MacFall JR, Prescott DM, Charles HC, Samulski TV. 1H MRI phase thermometry in vivo in canine brain, muscle, and tumor tissue. Medical Physics 1996; 23(10)1775–1782
  • De Senneville BD, Quesson B, Moonen CTW. Magnetic resonance temperature imaging. International Journal of Hyperthermia 2005; 21(6)515–531
  • Arora D, Cooley D, Perry T, Guo JY, Richardson A, Moellmer J, Hadley R, Parker D, Skliar M, Roemer RB. MR thermometry-based feedback control of efficacy and safety in minimum-time thermal therapies: Phantom and in-vivo evaluations. International Journal of Hyperthermia 2006; 22(1)29–42
  • Chopra R, Wachsmuth J, Burtnyk M, Haider MA, Bronskill MJ. Analysis of factors important for transurethral ultrasound prostate heating using MR temperature feedback. Physics in Medicine and Biology 2006; 51(4)827–844
  • Wust P, Seebass M, Nadobny J, Deuflhard P, Monich G, Felix R. Simulation studies promote technological development of radiofrequency phased array hyperthermia. International Journal of Hyperthermia 1996; 12: 477–494
  • Paulsen KD, Geimer S, Tang J, Boyse WE. Optimization of pelvic heating rate distributions with electromagnetic phased arrays. International Journal of Hyperthermia 1999; 15(3)157–186
  • Turner PF (1999) MRI integration with 3D phased array BSD-2000·3-D hyperthermia system. Proceedings of the 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Fall Meeting of the Biomedical Engineering Society (1st Joint BMES/ EMBS), Oct 13–Oct 16 1999 (Annual International Conference of the IEEE Engineering in Medicine and Biology  – Proceedings), Atlanta, GAUSA, 1999. Institute of Electrical and Electronics Engineers Inc., Piscataway, NJUSA, 1278
  • Gellermann J, Wlodarczyk W, Feussner A, Fahling H, Nadobny J, Hildebrandt B, Felix R, Wust P. Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. International Journal of Hyperthermia 2005; 21(6)497–513
  • Jia X, Paulsen KD, Buechler DN, Gibbs Jr FA, Meaney PM. Finite element simulation of Sigma 60 heating in the Utah phantom: Computed and measured data compared. International Journal of Hyperthermia 1994; 10(6)755–774
  • Nau WH, Diederich CJ, Burdette EC. Evaluation of multielement catheter-cooled interstitial ultrasound applicators for high-temperature thermal therapy. Medical Physics 2001; 28(7)1525–1534

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.