853
Views
44
CrossRef citations to date
0
Altmetric
Original

Augmentation of targeted delivery with pulsed high intensity focused ultrasound

&
Pages 506-520 | Received 14 Nov 2007, Accepted 31 Mar 2008, Published online: 09 Jul 2009

References

  • Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res 2000; 60: 4440–4445
  • Du X, Qiu B, Zhan X, Kolmakova A, Gao F, Hofmann LV, Cheng L, Chatterjee S, Yang X. Radiofrequency-enhanced vascular gene transduction and expression for intravascular MR imaging-guided therapy: Feasibility study in pigs. Radiology 2005; 236: 939–944
  • Isaka Y, Imai E. Electroporation-mediated gene therapy. Expert Opin Drug Deliv 2007; 4: 561–571
  • Dobson J. Magnetic micro- and nano-particle-based targeting for drug and gene delivery. Nanomed 2006; 1: 31–37
  • Hall WA, Rustamzadeh E, Asher AL. Convection-enhanced delivery in clinical trials. Neurosurg Focus 2003; 14: e2
  • Wells DJ. Gene therapy progress and prospects: Electroporation and other physical methods. Gene Ther 2004; 11: 1363–1369
  • Mitrigotri S, Kost J. Low frequency sonophoresis: A review. Adv Drug Deliv Rev 2004; 56: 589–601
  • Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363–1380
  • Yuan F. Transvascular drug delivery in solid tumors. Semin Radiat Oncol 1998; 8: 164–175
  • Wang Y, Yuan F. Delivery of viral vectors to tumor cells: Extracellular transport, systemic distribution, and strategies for improvement. Ann Biomed Eng 2006; 34: 114–127
  • Boucher Y, Jain RK. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse. Cancer Res 1992; 52: 5110–5114
  • Stohrer M, Boucher Y, Stangassinger M, Jain RK. Oncotic pressure in solid tumors is elevated. Cancer Res 2000; 60: 4251–4255
  • Bednarski MD, Lee JW, Callstrom MR, Li KCP. In vivo target-specific delivery of macromolecular agents with MR-guided focused ultrasound. Radiology 1997; 204: 263–268
  • Zderic V, Clark JI, Vaezy S. Drug delivery into the eye with the use of ultrasound. J Ultrasound Med 2004; 23: 1349–1359
  • Hirokawa T, Karshafian R, Pavlin CJ, Burns PN. Insonation of the eye in the presence of microbubbles: Preliminary study of the duration and degree of vascular bioeffects - work in progress. J Ultrasound Med 2007; 26: 731–738
  • Stone MJ, Frenkel V, Dromi S, Thomas P, Lewis RP, Li KCP, Horne M, Wood BJ. Pulsed-high intensity focused ultrasound enhanced tPA mediated thrombolysis in a novel in vivo clot model, a pilot study. Thromb Res 2007; 121: 193–202
  • ter Haar GR. Ultrasonic Biophysics. Physical Principles of Medical Ultrasonics, second, CR Hill, JC Bamber, GR ter Haar. John Wiley & Sons, Chichester 2004; 349–398
  • Kennedy JE, Ter Haar GR, Cranston D. High intensity focused ultrasound: Surgery of the future?. Br J Radiol 2003; 76: 590–599
  • Nyborg WL. Biological effects of ultrasound: Development of safety guidelines. Part II: General review. Ultrasound Med Biol 2001; 27: 301–333
  • Kimmel E. Cavitation bioeffects. Crit Rev Biomed Eng 2006; 34: 105–161
  • Hill CR, ter Haar GR. High intensity focused ultrasound - Potential for cancer treatment. Br J Radiol 1995; 68: 1296–1303
  • Thüroff S, Chaussy C, Vallancien G, Wieland W, Kiel HJ, LeDuc A, Desgrandchamps F, De La Rosette JJMCH, Gelet A. High-intensity focused ultrasound and localized prostate cancer: Efficacy results from the European multicentric study. J Endourol 2003; 17: 673–677
  • Chan AH, Fujimoto VY, Moore DE, Martin RW, Vaezy S. An image-guided high intensity focused ultrasound device for uterine fibroids treatment. Med Phys 2002; 29: 2611–2620
  • Wu F, Wang Z, Chen W, Wang W, Gui Y, Zhang M, Zheng G, Zhou Y, Xu G, Li M, Zhang C, Ye H, Feng R. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: An overview. Ultrasonics Sonochemistry 2004; 11: 149–154
  • Wu F, Wang ZB, Cao YD, Chen WZ, Bai J, Zou JZ, Zhu H. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer. Br J Cancer 2003; 89: 2227–2233
  • Kennedy JE, Wu F, ter Haar GR, Gleeson FV, Phillips RR, Middleton MR, Cranston D. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics 2004; 42: 931–935
  • Illing RO, Kennedy JE, Wu F, ter Haar GR, Protheroe AS, Friend PJ, Gleeson FV, Cranston DW, Phillips RR, Middleton MR. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a western population. Br J Cancer 2005; 93: 890–895
  • Tachibana K. Emerging technologies in therapeutic ultrasound: Thermal ablation to gene delivery. Hum Cell 2004; 17: 7–15
  • Jolesz FA, Hynynen K, McDannold N, Tempany C. MR imaging-controlled focused ultrasound ablation: A noninvasive image-guided surgery. Magn Reson Imaging Clin N Am 2005; 13: 545–560
  • Vaezy S, Zderic V. Hemorrhage control using high intensity focused ultrasound. Int J Hyperthermia 2007; 23: 203–211
  • Hynynen K, Colucci V, Chung A, Jolesz F. Noninvasive arterial occlusion using MRI-guided focused ultrasound. Ultrasound Med Biol 1996; 22: 1071–1077
  • Ben-Yosef R, Kapp DS. Direct clinical comparison of ultrasound and radiative electromagnetic hyperthermia applicators in the same tumours. Int J Hyperthermia 1995; 11: 1–10
  • Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M, Poff J, Xie J, Libutti SK, Li KC, Wood BJ. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 2007; 13: 2722–2727
  • Liu Y, Kon T, Li C, Zhong P. High intensity focused ultrasound-induced gene activation in solid tumors. J Acoust Soc Am 2006; 120: 492–501
  • Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. NeuroImage 2005; 24: 12–20
  • Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Ann Rev Biomed Eng 2007; 9: 415–447
  • Hirokawa T, Karshafian R, Pavlin CJ, Burns PN. Insonation of the eye in the presence of microbubbles: Preliminary study of the duration and degree of vascular bioeffects - work in progress. J Ultrasound Med 2007; 26: 731–738
  • Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: Mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 2002; 27: 115–134
  • Deng CX, Sieling F, Pan H, Cui J. Ultrasound-induced cell membrane porosity. Ultrasound Med Biol 2004; 30: 519–526
  • Kinoshita M, Hynynen K. Key factors that affect sonoporation efficiency in in vitro settings: The importance of standing wave in sonoporation. Biochem Biophys Res Commun 2007; 359: 860–865
  • Iwanaga K, Tominaga K, Yamamoto K, Habu M, Maeda H, Akifusa S, Tsujisawa T, Okinaga T, Fukuda J, Nishihara T. Local delivery system of cytotoxic agents to tumors by focused sonoporation. Cancer Gene Ther 2007; 14: 354–363
  • Azuma H, Tomita N, Kaneda Y, Koike H, Ogihara T, Katsuoka Y, Morishita R. Transfection of NFκ.B-decoy oligodeoxynucleotides using efficient ultrasound-mediated gene transfer into donor kidneys prolonged survival of rat renal allografts. Gene Ther 2003; 10: 415–425
  • Newman CM, Bettinger T. Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Ther 2007; 14: 465–475
  • Hynynen K, Clement G. Clinical applications of focused ultrasound - The brain. Int J Hyperthermia 2007; 23: 193–202
  • McDannold N, Vykhodtseva N, Hynynen K. Targeted disruption of the blood-brain barrier with focused ultrasound: Association with cavitation activity. Phys Med Biol 2006; 51: 793–807
  • Hynynen K. Ultrasound potentiated therapy. Paper presented at the IEEE International Ultrasonics Symposium, New York, October, 2007
  • Pernot M, Aubry J, Tanter M, Boch A, Marquet F, Kujas M, Seilhean D, Fink M. In vivo transcranial brain surgery with an ultrasonic time reversal mirror. J Neurosurg 2007; 106: 1061–1066
  • White PJ. Transcranial focused ultrasound surgery. Top Magn Reson Imaging 2006; 17: 165–172
  • Tartis MS, McCallan J, Lum AFH, LaBell R, Stieger SM, Matsunaga TO, Ferrara KW. Therapeutic effects of paclitaxel-containing ultrasound contrast agents. Ultrasound Med Biol 2006; 32: 1771–1780
  • Lum AFH, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW. Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 2006; 111: 128–134
  • Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: Therapeutic application in drug/gene delivery. J Control Release 2006; 114: 89–99
  • Zieniuk J, Chivers RC. Measurement of ultrasonic exposure with radiation force and thermal methods. Ultrasonics 1976; 14: 161–172
  • Overton JM, Williams TD. Behavioral and physiologic responses to caloric restriction in mice. Physiol Behav 2004; 81: 749–754
  • Poff J, Traughber B, Allen C, Colunga A, Xie J, Chen Z, Frenkel V, Wood B, Van Waes C, Li K. Pulsed-high intensity focused ultrasound enhances tumor growth inhibition by bortezomib in a murine squamous cell carcinoma model. Paper presented at the 6th International Symposium on Therapeutic Ultrasound, Oxford, August – September, 2006
  • Van Waes C, Chang AA, Lebowitz PF, Druzgal CH, Chen Z, Elsayed YA, Sunwoo JB, Rudy SF, Morris JC, Mitchell JB, Camphausen K, Gius D, Adams J, Sausuille EA, Conley BA. Inhibition of nuclear factor-κB and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2005; 63: 1400–1412
  • Khaibullina A, Jang B, Sun H, Le N, Yu S, Frenkel V, Carrasquillo JA, Pastan I, Li KCP, Paik CH. Pulsed high-intensity focused ultrasound enhances uptake of radiolabeled monoclonal antibody to human epidermoid tumor in nude mice. J Nucl Med 2008; 49: 295–302
  • Camera L, Kinuya S, Pai LH, Garmestani K, Brechbiel MW, Gansow OA, Paik CH, Pastan I, Carrasquillo JA. Preclinical evaluation of 111In-labeled B3 monoclonal antibody: Biodistribution and imaging studies in nude mice bearing human epidermoid carcinoma xenografts. Cancer Res 1993; 53(12)2834–2839
  • Dittmar KM, Xie J, Hunter F, Trimble C, Bur M, Frenkel V, Li KC. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: Initial experience. Radiology 2005; 235: 541–546
  • Sun H, Khaibulina A, Li K. Bioluminescence studies: Pulsed high-intensity focused ultrasound enhances the viral gene delivery in tumor models. Mol Imaging 2006; 5: 336
  • Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 1997; 54: 415–421
  • Hauck ML, LaRue SM, Petros WP, Poulson JM, Yu D, Spasojevic I, Pruitt AF, Klein A, Case B, Thrall DE, Needham D, Dewhirst MW. Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin Cancer Res 2006; 12: 4004–4010
  • Yuh EL, Shulman SG, Mehta SA, Xie J, Chen L, Frenkel V, Bednarski MD, Li KCP. Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: Study in a murine model. Radiology 2005; 234: 431–437
  • Frenkel V, Etherington A, Greene M, Quijano J, Xie J, Hunter F, Dromi S, Li KC. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: Investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Academic Radiol 2006; 13: 469–479
  • Frenkel F, Deng C, O'Neill BE, Quijano J, Stone MJ, Dromi S, Hunter F, Xie J, Quinn TP, Wood BJ, Li KCP. Pulsed-high intensity focused ultrasound (HIFU) exposures for enhanced delivery of therapeutics: Mechanisms and applications. Therapeutic Ultrasound: 5th International Symposium on Therapeutic Ultrasound, GT Clement, N McDannold, K Hynynen. AIP, Melville, NY 2006
  • Wang Y, Yuan F. Delivery of Viral Vectors to Tumor Cells: Extracellular transport, systemic distribution, and strategies for improvement. Ann Biomed Eng 2006; 34: 114–127
  • Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med 1996; 334: 1717–1725
  • Asher AL, Mule JJ, Kasid A, Restifo NP, Salo JC, Reichert CM, Jaffe G, Fendly B, Kriegler M, Rosenberg SA. Murine tumor cells transduced with the gene for tumor necrosis factor-alpha. Evidence for paracrine immune effects of tumor necrosis factor against tumors. J Immunol 1991; 146: 3227–3234
  • Quijano J, Colunga A, Xie J, Frenkel V, Li KC. Enhanced regression in a squamous cell carcinoma murine tumor model using pulsed-high intensity focused ultrasound (HIFU) and naked TNF-a plasmid. Sept. 4th annual meeting of the Society for Molecular Imaging, Cologne, 2005
  • Trübestein G, Engel C, Etzel F, Sobbe A, Cremer H, Stumpff U. Thrombolysis by ultrasound. Clin Sci Mol Med Sup 1976; 3: S697–698
  • Tsivgoulis G, Alexandrov AV. Ultrasound-enhanced thrombolysis in acute ischemic stroke: Potential, failures, and safety. Neurotherapeutics 2007; 4: 420–427
  • Pfaffenberger S, Devcic-Kuhar B, Kastl SP, Huber K, Maurer G, Wojta J, Gottsauner-Wolf M. Ultrasound thrombolysis. Thromb Haemost 2005; 94: 26–36
  • Frenkel V, Oberoi J, Stone MJ, Park M, Deng C, Wood BJ, Neeman Z, Horne M, III, Li KC. Pulsed-high intensity focused ultrasound (HIFU) enhances thrombolysis in an in vitro model. Radiology 2006; 239: 86–93
  • Holland CK, Vaidyaa SS, Dattaa S, Coussios C, Shawa GJ. Ultrasound-enhanced tissue plasminogen activator thrombolysis in an in vitro porcine clot model. Thromb Res 2008; 121(5)663–673, doi:10.1016/j.thromres.2007.07.006
  • Kam AW, Wang H, Farahani K, Thomasson D, O’Neill B, Angstadt M, Jesson J, Li KCP. Safety of pulsed high intensity focused ultrasound for enhanced drug and gene delivery. Therapeutic ultrasound: Sixth International Symposium on Therapeutic Ultrasound, C Cousios, GR ter Haar. AIP, Melville, NY 2007; 455–461
  • O'Neill BE, Vo H, Angstadt M, Quinn TP, Li KCP, Wood BJ, Frenkel V. Investigations into the contribution of a thermal mechanism for pulsed high intensity focused ultrasound mediated delivery. Proceedings of the IEEE International Ultrasonics Symposium. The Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, New York 2007; 1–4
  • O’Neill BE, Vo H, Angstadt M, Quinn TP, Li KCP, Frenkel V. Pulsed high intensity focused ultrasound mediated delivery: Mechanisms and efficacy in murine muscle. Ultrasound in Med Biol, submitted 2008
  • Tu J, Hwang JH, Matula TJ, Brayman AA, Crum LA. Intravascular inertial cavitation activity detection and quantification in vivo with Optison. Ultrasound Med Biol 2006; 32: 1601–1609
  • Chan AH, Fujimoto VY, Moore DE, Martin RW, Vaezy S. An image-guided high intensity focused ultrasound device for uterine fibroids treatment. Med Phys 2002; 29: 2611–2620
  • Hynynen K. The threshold for thermally significant cavitation in dog's thigh muscle in vivo. Ultrasound Med Biol 1991; 17: 157–169
  • O'Neill BE, Quinn TP, Frenkel V, Li KCP. A multi-phasic continuum damage mechanics model of mechanically induced increased permeability in tissues, AJ Bushby, VL Ferguson, C Ko, ML Oyen, Mechanical behavior of biological and biomimetic systems Warrendale, PA, Mater Res Soc Symp Proc 898E, 2005, 0898–L02–05
  • Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 2004; 30: 979–989

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.