1,422
Views
95
CrossRef citations to date
0
Altmetric
Original

Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery

, &
Pages 496-505 | Received 16 Apr 2008, Accepted 23 Apr 2008, Published online: 09 Jul 2009

References

  • Jordan A, Scholz R, Wust P, Fahling H, Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mat 1999; 201: 413–419
  • Johannsen M, Thiesen B, Jordan A, Taymoorian K, Gneveckow U, Waldöfner N, Scholz R, Koch M, Lein M, Jung K, et al. Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 2005; 64: 283–292
  • Matsuoka F, Shinkai M, Honda H, Kubo T, Sugita T, Kobayashi T. Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomag Res Tech 2004; 2: 1–16
  • Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Jung K, Jordan A, Wust P, Loening SA. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int J Hyperthermia 2007; 23: 315–323
  • Dale LH. Synthesis, properties, and applications of iron nanoparticles. Small 2005; 1: 482–501
  • Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56–58
  • Kim BM, Qian S, Bau HH. Filling carbon nanotubes with particles. Nano Lett 2005; 5: 873–878
  • Prakash R, Washburn S, Superfine R, Cheney ER. Visualization of individual carbon nanotubes with fluorescence microscopy using conventional fluorophores. Appl Phys Lett 2003; 83: 1219–1221
  • Didenko VV, Moore VC, Baskin DS, Smalley RE. Visualization of individual single-walled carbon nanotubes by fluorescent polymer wrapping. NanoLett 2005; 5: 1563–1567
  • Hilder TA, Hill JM. Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology 2007; 18: 275704–275712
  • Kam NW, O'Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional transporters and near-infrared agents for selective cancer cell destruction. Proc Nat Acad Sci USA 2005; 102: 11600–11605
  • Bianco A, Prato M. Can CNTs be considered useful tools for biological applications?. Adv Mat 2003; 15: 1765–1768
  • Hirsch A, Vostrowsky O. Functionalization of carbon nanotubes. Topics Curr Chem 2005; 245: 193–237
  • Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand J-p, Muller S, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotech 2007; 2: 108–113
  • Pantarotto D, Briand J-P, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Comm 2004; 1: 16–17
  • Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand J-P, Gennaro R, Prato M, Bianco A. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angewandte Chemie Int Ed 2005; 44: 6358–6362
  • Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J Am Chem Soc 2005; 127: 6021–6026
  • Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat Nano 2007; 2: 47–52
  • Wang S, Humphreys ES, Chung S-Y, et al. Nature Mater 2003; 2: 196–200
  • Mönch I, Meye A, Leonhardt A, Krämer K, Kozhuharova R, Gemming T, Wirth MP, Büchner B. Ferromagnetic filled carbon nanotubes and nanoparticles: Synthesis and lipid-mediated delivery into human tumor cells. J Magn Magn Mat 2005; 290–291: 276–278
  • Kam NWS, Liu Z, Dai HJ. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 2005; 127: 12492–12493
  • Salvador-Morales C, Flahaut E, Sim E, Sloan J, Green MLH, Sim RB. Complement activation and protein adsorption by carbon nanotubes. Molec Immun 2006; 43: 193–201
  • Salvador-Morales C, Townsend P, Flahaut E, Venien-Bryan C, Vlandas A, Green MLH, Sim RB. Binding of pulmonary surfactant proteins to carbon nanotubes; Potential for damage to lung immune defense mechanisms. Carbon 2007; 45: 607–617
  • Smart SK, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon 2006; 44: 1034–1047
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 2006; 92: 5–22
  • Kam NWS, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004; 126: 6850–6851
  • Worle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006; 6: 1261–1268
  • Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 2005; 155: 73–85
  • Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol in Vitro 2006; 20: 1202–1212
  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicology Lett 2006; 160: 121–126
  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part Fibre Toxicol 2005; 2: 1–35
  • Taylor A, Lipert K, Krämer K, Hampel S, Füssel S, Meye A, Klingeler R, Ritschel M, Büchner B, Wirth MP. Biocompatibility of iron filled carbon nanotubes 2007, submitted for publication
  • Mönch I, Meye A, Leonhardt A. Nanotechnologies for life sciences, Vol. 6: Nanomaterials for cancer therapy and diagnosis, CSSR Kumar. Wiley-VCH, Weinheim 2006; 259–337
  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. PNAS 2006; 103: 3357–3362
  • Guo J, Zhang X, Li Q, Li W. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nuclear Med Biol 2007; 34: 579–583
  • Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 2007; 45: 1419–1424
  • Grobert N, Hsu WK, Zhu YQ, Hare JP, Kroto HW, Terrones M, Terrones H, Redlich P, Rühle M, Escudero R, et al. Enhanced magnetic coercivities in Fe nanowires. Appl Phys Lett 1999; 75: 3363–3365
  • Guerret-Piécourt C, Le Bouar Y, Loiseau A, Pascard H. Nature 1994; 372: 761–765
  • Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, et al. Crystalline ropes of metallic carbon nanotubes. Science 1996; 273: 483–487
  • Hampel S, Leonhardt A, Selbmann D, Biedermann K, Elefant D, Müller C, Gemming T, Büchner B. Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 2006; 44: 2316–2322
  • Sen R, Govindaraj A, Roa CNR. Carbon nanotubes by the metallocene route. Chem Phys Lett 1997; 267: 276–280
  • Mueller C, Golberg D, Leonhardt A, Hampel S, Buechner B. Growth studies, TEM and XRD investigations of iron-filled carbon nanotubes. Physica Status Solidi (A) 2006; 203: 1064–1068
  • Leonhardt A, Hampel S, Mueller C, Moench I, Koseva R, Ritschel M, Elefant D, Biedermann K, Buechner B. Synthesis, properties and applications of ferromagnetic-filled carbon nanotubes. Chem Vapor Depos 2006; 12: 380–387
  • Mueller C, Hampel S, Elefant D, Biedermann K, Leonhardt A, Ritschel M, Buechner B. Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties. Carbon 2006; 44: 1746–1753
  • Mueller C, Leonhardt A, Hampel S, Buechner B. Diameter controlled growth of iron-filled carbon nanotubes. Physica Status Solidi (B) 2006; 243: 3091–3094
  • Wang W, Wang K, Lv R, Wei J, Zhang X, Kang F, Chang J, Shu Q, Wang Y, Wu D. Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorbenzene as precursor. Carbon 2007; 45: 1105–1136
  • Mayne M, Grobert N, Terrones M, Kamalakaran R, Rühle M, Kroto HW, Dalton DRM. Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem Phys Lett 2001; 338: 101–107
  • Pichot V, Launois P, Pinault M, Mayne-L′Hermite M, Reynaud C. Evidence of strong nanotube alignment and for iron preferential growth axis in multiwalled carbon nanotube carpets. Appl Phys Lett 2004; 85: 243–245
  • Tsang SC, Chen YK, Harris PJF, Green MLH. A simple chemical method of opening and filling carbon nanotubes. Nature 1994; 372: 159–162
  • Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993; 362: 522–525
  • Tsang SC, Harris PJF, Green MLH. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 1993; 362: 520–522
  • Dujardin E, Ebbesen TW, Hiura H, Tanigaki K. Capillarity and wetting of carbon nanotubes. Science 1994; 265: 1850–1852
  • Vyalikh A, Klingeler R, Hampel S, Haase D, Ritschel M, Leonhardt A, Borowiak-Palen E, Rümmeli M, Bachmatiuk A, Kalenczuk RJ, et al. A nanoscaled contactless thermometer for biological systems. Physica Status Solidi (B) 2007; 244: 4092–4096
  • Hampel S, Kunze D, Haase D, Rauschenbach M, Kraemer K, Ritschel M, Leonhardt A, Thomas J, Oswald S, Hoffmann V, et al. Carbon nanotubes filled with a chemotherapeutic agent a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 2007; 3(2)175–182
  • Moench I, Leonhardt A, Meye A, Hampel S, Kozhuharova-Koseva R, Elefant D, Wirth MP, Buechner B. Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application. J Phys: Conference Series 2007; 61: 820–824
  • Satishkumar BC, Govindaraj A, Mofokeng J, Subbanna GN, Rao CNR. Novel experiments with carbon nanotubes: Opening, filling, closing and functionalizing nanotubes. J Phys (B): At Mol Opt Phys 1996; 29: 4925–4934
  • Leonhardt A, Ritschel M, Kozhuharova R, Graff A, Muehl T, Huhle R, Moench I, Elefant D, Schneider CM. Synthesis and properties of filled carbon nanotubes. Diamond Rel Mat 2003; 12: 790–793
  • Muehl T, Elefant D, Graff A, Kozhuharova R, Leonhardt A, Moench I, Ritschel M, Simon P, Groudeva-Zotova S, Schneider CM. Magnetic properties of aligned Fe-filled carbon nanotubes. J Appl Phys 2003; 93: 7894–7896
  • Leonhardt A, Ritschel M, Elefant D, Mattern N, Biedermann K, Hampel S, Mueller C, Gemming T, Buechner B. Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene. J Appl Phys 2005; 98: 074315-1–074315-5
  • Leonhardt A, Moench I, Meye A, Hampel S, Buechner B. Synthesis of ferromagnetic filled carbon nanotubes and their biomedical application. Adv Science Techn 2006; 49: 74–78
  • Ruskov T, Spirov I, Ritschel M, Mueller C, Leonhardt A, Ruskov R. Moessbauer morphological analysis of Fe-filled multiwalled carbon nanotube samples. J Appl Phys 2006; 100: 84326/1–8
  • Pankhurst QA, Conolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys (D): Appl Phys 2003; 36: R167–R181
  • Ritschel M, Leonhardt A, Elefant D, Oswald S, Büchner BJ. Rhenium-catalyzed growth carbon nanotubes. J Phys Chem (C) 2007; 111: 8414–8417
  • Sitharaman B, Kissell K, Hartman K, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun 2005; 31: 3915–3917
  • Panchapakesan B, Lu S, Sivakumar K, Teker K, Cesarone G, Wickstrom E. Single wall carbon nanotube nanobomb agents for killing breast cancer cells. Nanobiotech 2005; 1: 133–140
  • Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency filed. Cancer 2007; 110: 2654–2665;
  • Torti SV, Byrne F, Whelan O, Levi N, Ucer B, Schmid M, Torti FM, Akman S, Liu J, Ajayan PM, et al. Thermal ablation therapeutics based on CN multi-walled nanotubes. Int J Nanomed 2007; 2: 704–714
  • Gneveckow U, Jordan A, Scholz R, Brüß V, Waldöfner N, Ricke J, Feussner A, Hildebrandt B, Rau B, Wust P. Description and characterization of the novel hyperthermia - and thermoablation -system MFH (R) 300F for clinical magnetic fluid hyperthermia. Med Phys 2004; 31: 1444–1451
  • Smith NB, Merrilees NK, Hynynen K, Dahleh M. Control system for an MRI compatible intracavitary ultrasound array for thermal treatment of prostate disease. Int J Hyperthermia 2001; 17: 271–282
  • Abragam A. Principles of nuclear magnetism. University Press, Oxford, UK 1961
  • Andrew ER, Hinshaw WS, Tiffen RS. Nuclear spin-lattice relaxation in solid cuprous halides. J Phys (C): Solid State Phys 1973; 6: 2217–2222
  • Vyalikh A, Wolter AHB, Hampel S, Hasse D, Ritschel M, Leonhardt A, Grafe HJ, Taylor A, Krämer K, Büchner B, Klingeler R. A carbon-wrapped nanoscaled therometer for temperature control in biological environment. Nanomedicine, in press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.