451
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Solution to the bioheat equation for hyperthermia with La1−xAgyMnO3-δ nanoparticles: The effect of temperature autostabilization

, , , , , & show all
Pages 240-247 | Received 02 Oct 2008, Accepted 27 Dec 2008, Published online: 09 Jul 2009

References

  • Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph. Ann Surg 1957; 146: 596–606
  • Andrä W. Magnetic hyperthermia. Magnetism in medicine, W Andrä, H Nowak. Wiley, Berlin 1998; 450–470
  • Jordan A, Scholz R, Wust P, Fahling H, Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 1999; 201: 413–419
  • Moroz P, Jones SK, Gray BN. Magnetically mediated hyperthermia: Current status and further directions. Int J Hyperthermia 2002; 18: 267–284
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 2003; 36: 167–181
  • Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 2004; 270: 345–357
  • Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 2005; 26: 2231–2238
  • Pradhan P, Giri J, Samanta G, Sarma HD, Misra KP, Bellare J, Banerjee R, Bahadur D. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mater Res, Part B: Appl Biomater 2007; 81B: 12–22
  • Giri J, Ray A, Dasgupta S, Datta D, Bahadur D. Investigation on TC tuned nano particles of magnetic oxides for hyperthermia applications. Biomed Mater Eng 2003; 13: 387–399
  • Kuznetsov AA, Shlyakhtin OA, Brusentsov NA, Kuznetsov OA. ‘Smart’ mediators for self-controlled inductive heating. European Cells and Materials 2002; 3: 75s–77s
  • Pollert E, Knizek K, Marysko M, Kaspar P, Vasseur S, Duguet E. New TC-tuned magnetic nanoparticles for self-controlled hyperthermia. J Magn Magn Mater 2007; 316: 122–125
  • Prasad NK, Rathinasamy K, Panda D, Bahadur D. J Biomed Mater Res Part B: Applied Biomaterials 2008; 85B: 409–416
  • Melnikov OV, Gorbenko OYu, Popova MN, Kaul AR, Atsarkin VA, Demidov VV, Roy EJ, Soto C, Odintsov BM. Ag-doped Manganite Nanoparticles: New Materials for Temperature-Controlled Medical Hyperthermia. J Biomed Mater Res, Part A, in press. DOI: 10.1002/jbm.a.32177
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1948; 1: 93–122
  • Halac S, Roemer RB, Oleson JR, Cetas TC. Magnetic induction heating of tissue: Numerical evaluation of tumor temperature distributions. Int J Radiat Oncol Biol Phys 1983; 9: 881–91
  • Roemer RB, Cetas TC, Oleson JR, Halac S, Matloubieh AY. Comparative evaluation of hyperthermia heating modalities. I. Numerical analysis of thermal dosimetry bracketing cases. Radiat Res 1984; 100: 450–472
  • Roemer RB, Cetas TC, Oleson JR, Halac S, Matloubieh AY. Comparative evaluation of hyperthermia heating modalities. II. Application of the acceptable power range technique. Radiat Res 1984; 100: 473–486
  • Matloubieh AY, Roemer RB, Cetas TC. Numerical simulation of magnetic induction heating of tumors with ferromagnetic seed implants. IEEE Trans Biomed Eng 1984; 31: 227–234
  • Osteltree KB, Frizzell LA. Determination of power deposition patterns for localized hyperthermia: A steady state analysis. Int J Hyperthermia 1987; 3: 269–279
  • Osteltree KB, Frizzell LA. Determination of power deposition patterns for localized hyperthermia: A transient analysis. Int J Hyperthermia 1988; 4: 281–296
  • Durkee JW, Antich PP, Lee CE. Exact solution to the multiregion time-dependent bioheat equation I: Solution development. Phys Med Biol 1990; 35: 847–867
  • Durkee JW, Antich PP. Exact solution to the multiregion time-dependent bioheat equation II: Numerical evaluation of the solution. Phys Med Biol 1990; 35: 869–889
  • Durkee JW, Antich PP. Exact solution to the multi-region time-dependent bioheat equation with transient heat sources and boundary conditions. Phys Med Biol 1991; 36: 345–368
  • Durkee JW, Antich PP. Characterization of bioheat transport using an exact solution to the cylindrical geometry, multi-region, time-dependent bioheat equation. Phys Med Biol 1991; 36: 1377–1406
  • Haider SA, Cetas TC, Roemer RB. Temperature distribution in tissues from a regular array of hot source implants: An analytical approximation. IEEE Trans Biomed Eng 1993; 40: 408–417
  • Arkin H, Xu LX, Holmes KR. Recent developments in modelling heat transfer in blood perfused tissues. IEEE Trans Biomed Eng 1994; 41: 97–107
  • Kotte ANTJ, van Wieringen N, Lagendijk JJW. Modelling tissue heating with ferromagnetic seeds. Phys Med Biol 1998; 43: 105–120
  • van Wieringen N, Kotte ANTJ, van Leeuwen GMJ, Lagendijk JJW, van Dijk JDP, Nieuwenhuys GJ. Dose uniformity of ferromagnetic seed implants in tissue with discrete vasculature: A numerical study on the impact of seed characteristics and implantation techniques. Phys Med Biol 1998; 43: 121–138
  • Andrä W, d’Ambly CG, Hergt R, Hilger I, Kaiser WA. Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mat 1999; 194: 197–203
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002; 252: 370–374
  • Lv YG, Deng ZS, Liu J. 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field. IEEE Trans Nano Bioscience 2005; 4: 284–294
  • Bagaria HG, Johnson DT. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment. Int J Hyperthermia 2005; 21: 57–75
  • Stańczyk M. Numerical model of heat exchange in perfused tissues. Acta Bioeng Biomech 2007; 9: 25–34
  • Stauffer PR, Cetas TC, Fletcher AM, DeYoung DW, Dewhirst MW, Oleson JR, Roemer RB. Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Eng 1984; 3: 76–90
  • Roemer RB, Fletcher AM, Cetas TC. Obtaining local SAR and blood perfusion data from temperature measurements: steady state and transient techniques compared. Int J Radiat Oncol Biol Phys 1985; 11: 1539–1550
  • Cetas TC, Gross EJ, Contractor Y. A ferrite core/metallic sheath thermoseed for interstitial thermal therapies. IEEE Trans Biomed Eng 1998; 45: 68–77
  • Cetas TC, Gross EJ, Contractor Y. A ferrite core/metallic sheath thermoseed for interstitial thermal therapies. IEEE Trans Biomed Eng 1998; 45: 68–77
  • Hilger I, Hiergeist R, Hergt R, Winnefeld K, Schubert H, Kaiser WA. Thermal ablation of tumors using magnetic nanoparticles. Invest Radiol 2002; 37: 580–586
  • Toglia A, Kittelson JM, Roemer RB, Hodak JA, Carter LP. Cerebral bloodflow in and around spontaneous malignant gliomas. Int J Hyperthermia 1996; 12: 461–476

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.