1,520
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Effectiveness of magnetic fluid hyperthermia against Candida albicans cells

, , , , , & show all
Pages 842-857 | Received 18 Feb 2016, Accepted 09 Jul 2016, Published online: 18 Aug 2016

References

  • Liu H. (2002). Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen. Int J Med Microbiol 292:299–311.
  • Ruhnke M. (2002). Skin and mucous membrane infections. In: Calderone RA, ed. Candida and Candidiasis. Washington (DC): ASM Press, 307–25.
  • Burnie JP, Carter TL, Hodgetts SJ, et al. (2006). Fungal heat-shock proteins in human disease. Fems Microbiol Rev 30:53–88.
  • Kontoyiannis DP, Lewis RE. (2002). Antifungal drug resistance of pathogenic fungi. Lancet 359:1135–44.
  • Hilger I. (2013). In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperthermia 29:828–34.
  • Kozissnik B, Bohorquez AC, Dobson J, et al. (2013). Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperthermia 29:706–14.
  • Dudeck O, Bogusiewicz K, Pinkernelle J, et al. (2006). Local arterial infusion of superparamagnetic iron oxide particles in hepatocellular carcinoma – a feasibility and 3.0 T MRI study. Invest Radiol 41:527–35.
  • Jordan A, Scholz R, Maier-Hauff K, et al. (2006). The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14.
  • Maier-Hauff K, Rothe R, Scholz R, et al. (2007). Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neuro-Oncol 81:53–60.
  • Carrey J, Mehdaoui B, Respaud M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimisation. J Appl Phys 109:083921.
  • Weissleder R, Kelly K, Sun EY, et al. (2005). Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23:1418–23.
  • Zhang S, Bian Z, Gu C, et al. (2007). Preparation of anti-human cardiac troponin I immunomagnetic nanoparticles and biological activity assays. Colloid Surface B 55:143–8.
  • Koh I, Wang X, Varughese B, et al. (2006). Magnetic iron oxide nanoparticles for biorecognition: evaluation of surface coverage and activity. J Phys Chem B 110:1553–8.
  • Thomas LA, Dekker L, Kallumadil M, et al. (2009). Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J Mater Chem 19:6529–35.
  • Kim MH, Yamayoshi I, Mathew S, et al. (2013). Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann Biomed Eng 41:598–609.
  • Molday RS. (1984). US Patent 4,452,773.
  • Puddu M, Paunescu D, Stark WJ, et al. (2014). Magnetically recoverable, thermostable, hydrophobic DNA/silica encapsulates and their application as invisible oil tags. ACS Nano 8:2677–85.
  • Fauconnier N, Pons JN, Roger J, et al. (1997). Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–33.
  • Pisanic TR II, Blackwell JD, Shubayev VI, et al. (2007). Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28:2572–81.
  • Staros JV, Wright RW, Swingle DM. (1986). Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem 156:220–2.
  • Grabarek Z, Gergely J. (1990). Zero-length crosslinking procedure with the use of active esters. Anal Biochem 185:131–5.
  • Wildeboer RR, Southern P, Pankhurst QA. (2014). On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D Appl Phys 47:495003.
  • Wang SY, Huang SJ, Borca-Tasciuc DA. (2013). Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field. IEEE Trans Magn 49:255–62.
  • Standarisation EC. EN 1275: chemical disinfectants and antiseptics. (2005). Quantitative suspension test for the evaluation of basic fungicidal or basic yeasticidal activity of chemical disinfectants and antiseptics. Test method and requirements (phase 1).
  • Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63.
  • Graziano JH. (1986). Role of 2,3-dimercaptosuccinic acid in the treatment of heavy metal poisoning. Med Toxicol Adv Drug 1:155–62.
  • Rooney JP. (2007). The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234:145–56.
  • Chaves SB, Lacava LM, Lacava ZGM, et al. (2002). Light microscopy and magnetic resonance characterisation of a DMSA-coated magnetic fluid in mice. IEEE Trans Magn 38:3231–3.
  • Baillie GS, Douglas LJ. (1998). Iron-limited biofilms of Candida albicans and their susceptibility to amphotericin B. Antimicrob Agents Chemother 42:2146–9.
  • Fratti RA, Belanger PH, Ghannoum MA, et al. (1998). Endothelial cell injury caused by Candida albicans is dependent on iron. Infect Immun 66:191–6.
  • Knight SA, Vilaire G, Lesuisse E, et al. (2005). Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 73:5482–92.
  • Almeida RS, Wilson D, Hube B. (2009). Candida albicans iron acquisition within the host. Fems Yeast Res 9:1000–12.
  • Moragues MD, Omaetxebarria MJ, Elguezabal N, et al. (2003). A monoclonal antibody directed against a Candida albicans cell wall mannoprotein exerts three anti-C. albicans activities. Infect Immun 71:5273–9.
  • Arguelles JC. (1997). Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans. Fems Microbiol Lett 146:65–71.
  • Pinjon E, Sullivan D, Salkin I, et al. (1998). Simple, inexpensive, reliable method for differentiation of Candida dubliniensis from Candida albicans. J Clin Microbiol 36:2093–5.
  • Zeuthen ML, Howard DH. (1989). Thermotolerance and the heat-shock response in Candida albicans. J Gen Microbiol 135:2509–18.
  • Sandini S, Melchionna R, Bromuro C, et al. (2002). Gene expression of 70 kDa heat shock protein of Candida albicans: transcriptional activation and response to heat shock. Med Mycol 40:471–8.
  • Piecuch A, Oblak E. (2013). (Mechanisms of yeast resistance to environmental stress). Postepy Hig Med Dosw (Online) 67:238–54.
  • Jain NK, Roy I. (2009). Effect of trehalose on protein structure. Protein Sci 18:24–36.
  • Mahmud SA, Hirasawa T, Furusawa C, et al. (2012). Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. J Biosci Bioeng 113:526–8.
  • Prasad NK, Rathinasamy K, Panda D, et al. (2007). Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of gamma-MnxFe2−xO3 synthesised by a single step process. J Mater Chem 17:5042–51.
  • Marcos-Campos I, Asin L, Torres TE, et al. (2011). Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Nanotechnology 22:205101.
  • Goya GF, Asin L, Ibarra MR. (2013). Cell death induced by AC magnetic fields and magnetic nanoparticles: current state and perspectives. Int J Hyperthermia 29:810–18.
  • Petryk AA, Giustini AJ, Gottesman RE, et al. (2013). Magnetic nanoparticle hyperthermia enhancement of cisplatin chemotherapy cancer treatment. Int J Hyperthermia 29:845–51.
  • Vermeer AWP, Bremer MGEG, Norde W. (1998). Structural changes of IgG induced by heat treatment and by adsorption onto a hydrophobic Teflon surface studied by circular dichroism spectroscopy. Bba-Gen Subjects 1425:1–12.
  • Vermeer AWP, Norde W. (2000). The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J 78:394–404.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.