2,770
Views
82
CrossRef citations to date
0
Altmetric
Original Articles

Treatment planning in microwave thermal ablation: clinical gaps and recent research advances

, , &
Pages 83-100 | Received 29 Feb 2016, Accepted 16 Jul 2016, Published online: 21 Aug 2016

References

  • Ryan TP, Turner PF, Hamilton B. (2010). Interstitial microwave transition from hyperthermia to ablation: historical perspectives and current trends in thermal therapy. Int J Hyperthermia 26:415–33.
  • Ahmed M, Brace CL, Lee FT Jr. et al. (2011). Principles of and advances in percutaneous ablation radiology. Radiology 258:351–69.
  • Lin JC. (1999). Catheter microwave ablation therapy for cardiac arrhythmias. Bioelectromagnetics 20:120–32.
  • Yeasmin S, Nakayama K, Ishibashi M, et al. Microwave endometrial ablation as an alternative to hysterectomy for the emergent control of uterine bleeding in patients who are poor surgical candidates. Arch Gynecol Obstet (2009). 280:279–282.
  • Brace CL. (2009). Radiofrequency and microwave ablation of the liver, lung, kidney and bone: what are the differences. Curr Probl Diagn Radiol 38:135–43.
  • Lin Y, Liang P, Yu X, et al. (2014). Percutaneous microwave ablation of renal cell carcinoma is safe in patients with a solitary kidney. Oncology 83:357–63.
  • Liang P, Yu X, Yu J, eds. (2015). Microwave ablation treatment of solid tumors Dordrecht: Springer.
  • Smith SL, Jennings PE. (2015). Lung radiofrequency and microwave ablation: a review of indications, techniques and post-procedural imaging appearances. Br J Radiol 88:20140598.
  • Kok HP, Wust P, Stauffer PR, et al. (2015). Current state of the art of regional hyperthermia treatment planning: a review. Radiat Oncol 10:196.
  • Hines-Peralta AU, Pirani N, Clegg P, et al. (2006). Microwave ablation: results with a 2.45-GHz applicator in ex vivo bovine and in vivo porcine liver. Radiology 239:94–102.
  • Ward RC, Healey T, Dupuy DE. (2013). Microwave ablation devices for interventional oncology. Expert Rev Med Devices 10:225–38.
  • Alexander ES, Wolf FJ, Machan JT, et al. (2015). Microwave ablation of focal hepatic malignancies regardless of size: a 9-year retrospective study of 64 patients. Eur J Radiol 84:1083–90.
  • MicroThermX® – brochures and products’ specifications. Available from: http://www.terumo-europe.com/en-emea/interventional-oncology/loco-regional-treatment/ablation-systems/microthermx%C2%AE-microwave-ablation-system [last accessed Feb 2016].
  • Liang PC, Lai HS, Shih TTF, et al. (2015). Initial institutional experience of uncooled single-antenna microwave ablation for large hepatocellular carcinoma. Clin Radiol 70:e35–e40.
  • MedWaves AveCure™ – products’ datasheets. Available from: http://www.medwaves.com/products/[last accessed Feb 2016].
  • Lubner MG, Hinshaw JL, Andreano A, et al. (2012). High-powered microwave ablation with a small-gauge gas cooled antenna: initial ex vivo and in vivo results. J Vasc Interv Radiol 23:405–11.
  • Certus® 140 – brochures and products’ specifications. Available from: http://www.neuwave.com/products [last accessed Feb 2016].
  • Acculis MTA System – brochures and products’ specifications. Available from: http://www.angiodynamics.com/products/Acculis [last accessed Feb 2016].
  • AMICA™ – brochures and products’ specifications. Available from: http://www.hshospitalservice.com [last accessed Feb 2016].
  • Ierardi AM, Mangano A, Floridi C, et al. (2015). A new system of microwave ablation at 2450 MHz: preliminary experience. Updates Surg 67:39–45.
  • Emprint™ – brochures and products’ specifications. Available from: http://www.medtronic.com/covidien/products/ablation-systems/emprint-ablation-system [last accessed Feb 2016].
  • Jones RP, Kitteringham NR, Terlizzo M, et al. (2012). Microwave ablation of ex vivo human liver and colorectal liver metastases with a novel 14.5 GHz generator. Int J Hyperthermia 28:43–54.
  • Hinshaw JL, Lubner MG, Lee FT Jr, et al. (2014). Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation – what should you use and why? Radiographics 34:1344–62.
  • Rossi MR, Tanaka D, Shimada K, et al. (2010). Computerized planning of prostate cryosurgery using variable cryoprobe insertion depth. Cryobiology 60:71–9.
  • Dodi R, Ferraguti F, Ristolainen A, et al. (2014). Planning and simulation of percutaneous cryoablation. AASRI Procedia 6:118–22.
  • Yeniaras E, Fuentes DT, Fahrenholtz SJ, et al. (2014). Design and initial evaluation of a treatment planning software system for MRI-guided laser ablation in the brain. Int J Comput Assist Radiol Surg 9:659–67.
  • Schumann C, Rieder C, Haase S, et al. (2015). Interactive multi-criteria planning for radiofrequency ablation. Int J Comput Assist Radiol Surg 10:879–89.
  • Brace CL. (2011). Dual-slot antennas for microwave tissue heating: parametric design analysis and experimental validation. Med Phys 38:4232–40.
  • Chiang J, Hynes KA, Bedoya M, et al. (2013). A dual-slot microwave antenna for more spherical ablation zones: ex vivo and in vivo validation. Radiology 268:382–9.
  • Sun Y, Cheng Z, Dong L, et al. (2012). Comparison of temperature curve and ablation zone between 915- and 2450-MHz cooled-shaft microwave antenna: results in ex vivo porcine livers. Eur J Radiol 81:553–7.
  • Wang Y, Sun Y, Feng L, et al. (2008). Internally cooled antenna for microwave ablation: results in ex vivo and in vivo porcine livers. Eur J Radiol 67:357–61.
  • Cavagnaro M, Pinto R, Lopresto V. (2015). Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation. Phys Med Biol 60:3287–311.
  • Zhou W, Liang M, Pan H, et al. (2012). Comparison of ablation zones among different tissues using 2450-MHz cooled-shaft microwave antenna: results in ex vivo porcine models. PLoS One 8:e71873.
  • He N, Wang W, Ji Z, et al. (2010). Microwave ablation: an experimental comparative study on internally cooled antenna versus non-internally cooled antenna in liver models. Acad Radiol 17:894–9.
  • Umehara H, Seki T, Inokuchi R, et al. (2012). Microwave coagulation using a perfusion microwave electrode: preliminary experimental study using ex vivo and in vivo liver. Exp Ther Med 3:214–20.
  • Bedoya M, Muñoz del Rio A, Chiang J, et al. (2014). Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model. Med Phys 41:123301–07.
  • Biffi Gentili G, Ignesti C. (2015). Dual applicator thermal ablation at 2.45 GHz: a numerical comparison and experiments on synchronous versus asynchronous and switched-mode feeding. Int J Hyperthermia 31:528–37.
  • Curto S, Taj-Eldin M, Fairchild D, et al. (2015). Microwave ablation at 915 MHz vs 2.45 GHz: a theoretical and experimental investigation. Med Phys 42:6152–61.
  • Yu J, Liang P, Yu X, et al. (2011). A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: results in ex vivo and in vivo porcine livers. Eur J Radiol 79:24–130.
  • Strohbehn JW, Bowers ED, Walsh JE, et al. (1979). An invasive microwave antenna for locally-induced hyperthermia for cancer therapy. J Microw Power 14:339–50.
  • Luyen H, Gao F, Hagness SC, et al. (2014). Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver. IEEE Trans Biomed Eng 61:1702–10.
  • Kuang M, Lu MD, Xie XY, et al. (2007). Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna – experimental and clinical studies. Radiology 242:914–24.
  • Cavagnaro M, Amabile C, Cassarino S, et al. (2015). Influence of the target tissue size on the shape of ex vivo microwave ablation zones. Int J Hyperthermia 31:48–57.
  • Pennes HH. (1948). Analysis of tissue and arterial blood temperatures in resting forearm. J Appl Physiol 1:93–122.
  • Kolios MC, Worthington AE, Sherar MD, et al. (1998). Experimental evaluation of two simple thermal models using transient temperature analysis. Phys Med Biol 43:3325–40.
  • Wissler EH. (1998). Pennes’ 1948 paper revisited. J Appl Physiol 85:35–41.
  • Pisa S, Cavagnaro M, Bernardi P, et al. (2001). A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modeling and experimental measurement. IEEE Trans Biomed Eng 48:599–601.
  • Lopresto V, Pinto R, Lodato R, et al. (2012). Design and realisation of tissue-equivalent dielectric simulators for dosimetric studies on microwave antennas for interstitial ablation. Phys Med 28:245–53.
  • Khaled A-RA, Vafai K. (2003). Review: The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transfer 46:4989–5003.
  • Chiang J, Birla S, Bedoya M, et al. (2015). Modeling and validation of microwave ablations with internal vaporization. IEEE Trans Biomed Eng 62:657–63.
  • Kok HP, Gellermann J, van den Berg CAT, et al. (2013). Thermal modelling using discrete vasculature for thermal therapy: a review. Int J Hyperthermia 29:336–45.
  • Van den Berg CAT, Van de Kamer JB, De Leeuw AAC, et al. (2006). Towards patient specific thermal modelling of the prostate. Phys Med Biol 51:809–25.
  • Wright AS, Sampson LA, Warner TF, et al. (2005). Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 236:132–39.
  • Brace CL, Laeseke PF, Van Der Weide DW, et al. (2007). Microwave ablation with a triaxial antenna: results in ex vivo bovine liver. IEEE Trans Microw Theory Tech 53:215–20.
  • Prakash P. (2010). Theoretical modeling for hepatic microwave ablation. Open Biomed Eng J 4:27–38.
  • Lopresto V, Pinto R, Cavagnaro M. (2014). Experimental characterisation of the thermal lesion induced by microwave ablation. Int J Hyperthermia 30:110–18.
  • Schwan HP, Li K. (1953). Capacity and conductivity of body tissues at ultrahigh frequencies. Proc IRE 41:1735–40.
  • Stuchly MA. (1981). Dielectric properties of animal tissues in vivo at frequencies 10 MHz–1 GHz. Bioelectromagnetics 1:93–103.
  • Brady MM, Symons SA, Stuchly SS. (1981). Dielectric behaviour of selected animal tissues in vivo at frequencies from 2 to 4 GHz. IEEE Trans Biomed Eng 28:305–7.
  • Gabriel C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Brooks Air Force Technical Report AL/OE-TR-1996-0037; 1996. Available from: http://www.fcc.gov/oet/rfsafety/dielectric.html or http://niremf.ifac.cnr.it/tissprop
  • Gabriel C, Gabriel S, Corthout E. (1996). The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–49.
  • Gabriel S, Lau RW, Gabriel C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–69.
  • O’Rourke AP, Lazebnik M, Bertram JM, et al. (2007). Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys Med Biol 52:4707–19.
  • Peyman A, Kos B, Djokić M, et al. (2015). Variation in dielectric properties due to pathological changes in human liver. Bioelectromagnetics 9999:1–10.
  • Foster KR, Shepps JL. (1981). Dielectric properties of tumor and normal tissues at radio through microwave frequencies. J Microw Power 16:107–19.
  • Johnson CC, Guy AW. (1972). Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60:692–718.
  • Chin L, Sherar M. (2001). Changes in dielectric properties of ex vivo bovine liver at 915 MHz during heating. Phys Med Biol 46:197–211.
  • Stauffer PR, Rossetto F, Prakash M, et al. (2003). Phantom and animal tissues for modelling the electrical properties of human liver. Int J Hyperthermia 19:89–101.
  • Chin L, Sherar M. (2004). Changes in the dielectric properties of rat prostate ex vivo at 915 MHz during heating. Int J Hyperthermia 20:517–27.
  • Lazebnik M, Converse MC, Booske JH, et al. (2006). Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range. Phys Med Biol 51:1941–55.
  • Brace CL. (2008). Temperature-dependent dielectric properties of liver tissue measured during thermal ablation: toward an improved numerical model. Proc 30th Annual International IEEE EMBS Conference; 2008 Aug 20–24; Vancouver, British Columbia, Canada; p. 230–3.
  • Ji Z, Brace CL. (2011). Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation. Phys Med Biol 56:5249–64.
  • Lopresto V, Pinto R, Lovisolo GA, et al. (2012). Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz. Phys Med Biol 57:2309–27.
  • Rossmann C, Haemmerich D. (2014). Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit Rev Biomed Eng 42:467–92.
  • Bicher HI, Hetzel FW, Sandhu TS, et al. (1980). Effects of hyperthermia on normal and tumor microenvironment. Radiology 137:523–30.
  • Brown SL, Hunt JW, Hill RP. (1992). Differential thermal sensitivity of tumour and normal tissue microvascular response during hyperthermia. Int J Hyperthermia 8:501–14.
  • Sturesson C, Ivarsson K, Andersson-Engels S, et al. (1999). Changes in local hepatic blood perfusion during interstitial laser-induced thermotherapy of normal rat liver measured by interstitial laser Doppler flowmetry. Lasers Med Sci 14:143–9.
  • He X, McGee S, Coad JE, et al. (2004). Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int J Hyperthermia 20:567–93.
  • Bhattacharya A, Mahajan RL. (2003). Temperature dependence of thermal conductivity of biological tissues. Physiol Meas 24:769–83.
  • Guntur SR, Lee KI, Paeng DG, et al. (2013). Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation. Ultrasound Med Biol 39:1771–84.
  • Choi J, Morrissey M, Bischof JC. (2013). Thermal processing of biological tissue at high temperatures: impact of protein denaturation and water loss on the thermal properties of human and porcine liver in the range 25–80 °C. J Heat Transfer 135:061302.
  • Yang D, Converse MC, Mahvi DM, et al. (2007). Measurement and analysis of tissue temperature during microwave liver ablation. IEEE Trans Biomed Eng 54:150–55.
  • Yang D, Converse MC, Mahvi DM, et al. (2007). Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans Biomed Eng 54:1382–8.
  • Haemmerich D, dos Santos I, Schutt DJ, et al. (2006). In vitro measurements of temperature dependent specific heat of liver tissue. Med Eng Phys 28:194–7.
  • Ramachandran T, Sreenivasan K, Sivakumar R. (1996). Water vaporization from heated tissue: an in vitro study by differential scanning calorimetry. Lasers Surg Med 19:413–15.
  • Brace CL, Diaz TA, Hinshaw JL, et al. (2010). Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung. J Vasc Radiol 21:1280–6.
  • Sommer CM, Sommer SA, Mokry T, et al. (2013). Quantification of tissue shrinkage and dehydration caused by microwave ablation: experimental study in kidneys for the estimation of effective coagulation volume. J Vasc Interv Radiol 24:1241–8.
  • Rossmann C, Garrett-Mayer E, Rattay F, et al. (2014). Dynamics of tissue shrinkage during ablative temperature exposures. Physiol Meas 35:55–67.
  • Brace CL, Gagnon D, Borden Z, et al. Ablation-induced tissue contraction measured by CT: correlation with dehydration. World Conference on Interventional Oncology; 2011 Jun 9–11; New York, USA; 2011.
  • Farina L, Lopresto V, Pinto R, et al. The use of CT to improve the knowledge of the physical phenomena associated with microwave thermal ablation procedures. Proc 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA ’15); 2015 Sep 7–11; Torino, Italy; 2015. p. 977–80.
  • Liu D, Brace CL. (2014). CT imaging during microwave ablation: analysis of spatial and temporal tissue contraction. Med Phys 41:113303-1–9.
  • Farina L, Weiss N, Nissenbaum Y, et al. (2014). Characterisation of tissue shrinkage during microwave thermal ablation. Int J Hyperthermia 30:419–28.
  • Bertram JM, Yang D, Converse MC, et al. (2006). A review of coaxial-based interstitial antennas for hepatic microwave ablation. Crit Rev Biomed Eng 34:187–213.
  • Lin JC, Bernardi P, Pisa S, et al. Antennas for medical therapy and diagnostics. In: Balanis C, editor. (2008). Modern antenna handbook New York: Wiley; p. 1377–428.
  • Cavagnaro M, Amabile C, Bernardi P, et al. (2011). A minimally invasive antenna for microwave ablation therapies: design, performances, and experimental assessment. IEEE Trans Biomed Eng 58:949–59.
  • Karampatzakis A, Kühn S, Tsanidis G, et al. (2013). Antenna design and tissue parameters considerations for an improved modelling of microwave ablation in the liver. Phys Med Biol 58:3191–206.
  • McWilliams BT, Schnell EE, Curto S, et al. (2015). A directional interstitial antenna for microwave tissue ablation: theoretical and experimental investigation. IEEE Trans Biomed Eng 62:2144–50.
  • Ramadhyani S, Abraham JP, Sparrow EM. A mathematical model to predict tissue temperatures and necrosis during microwave thermal ablation of the prostate. In: Minkowycz WJ, Sparrow EM, Abraham JP, editors. Advances in numerical heat transfer Vol. 3. New York: CRC Press; 2009. p. 345–71.
  • Lu Y, Nan Q, Li L, et al. (2009). Numerical study on thermal field of microwave ablation with water cooled antenna. Int J Hyperthermia 25:108–15.
  • Ai H, Wu S, Gao H, et al. (2012). Temperature distribution analysis of tissue water vaporization during microwave ablation: experiments and simulations. Int J Hyperthermia 28:674–85.
  • Liang P, Dong B, Yu X, et al. (2001). Computer-aided dynamic simulation of microwave-induced thermal distribution in coagulation of liver cancer. IEEE Trans Biomed Eng 48:821–9.
  • He X, Bischof JC. (2005). The kinetics of thermal injury in human renal carcinoma cells. Ann Biomed Eng 3:502–10.
  • Mertyna P, Goldberg W, Yang W, et al. (2009). Thermal ablation: a comparison of thermal dose required for radiofrequency-, microwave-, and laser-induced coagulation in an ex vivo bovine liver. Acad Radiol 16:1539–48.
  • Prakash P, Diederich CJ. (2012). Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control. Int J Hyperthermia 28:69–86.
  • Pearce JA. (2013). Comparative analysis of mathematical models of cell death and thermal damage processes. Int J Hyperthermia 29:262–80.
  • Ahmed M, Solbiati L, Brace CL, et al. (2014). Image-guided tumor ablation: standardization of terminology and reporting criteria – a 10-year update. J Vasc Interv Radiol 25:1691–705.
  • Kim MJ, Kim JH, Chung JJ, et al. (2003). Focal hepatic lesions: detection and characterization with combination gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology 228:719–26.
  • Goldberg SN, Gazelle GS, Mueller PR. (2000). Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Roentgenol 174:323–31.
  • Sainani NL, Gervais DA, Mueller PR, et al. (2013). Imaging after percutaneous radiofrequency ablation of epatic tumours. I. Normal findings. Am J Roetgennol 200:184–93.
  • Little MW, Chung D, Boardman P, et al. (2013). Microwave ablation of pulmonary malignancies using a novel high-energy antenna system. Cardiovasc Intervent. Radiol 36:460–5.
  • Goldberg SN, Grassi CJ, Cardella JF, et al. (2005). Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology 235:728–39.
  • Clasen S, Pereira PL. (2008). Magnetic resonance guidance for radiofrequency ablation of liver tumors. J Magn Reson Imaging 27:421–33.
  • Morimoto M, Numata K, Kondo M, et al. (2010). C-arm cone beam CT for hepatic tumor ablation under real-time 3D imaging. AJR Am J Roentgenol 194:W452–4.
  • Saccomandi P, Schena E, Silvestri S. (2013). Techniques for temperature monitoring during laser-induced thermotherapy: an overview. Int J Hyperthermia 29:609–19.
  • McDannold N. (2005). Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: review of validation studies. Int J Hyperthermia 21:533–46.
  • Cazzato RL, Buy X, Alberti N, et al. (2015). Flat-panel cone-beam CT-guided radiofrequency ablation of very small (≤1.5 cm) liver tumors: technical note on a preliminary experience. Cardiovasc Intervent Radiol 38:206–12.
  • Pandeya GD, Greuter MJ, de Jong KP, et al. (2011). Feasibility of noninvasive temperature assessment during radiofrequency liver ablation on computed tomography. J Comput Assist Tomogr 35:356–60.
  • Bruners P, Pandeya GD, Levit E, et al. (2012). CT-based temperature monitoring during hepatic RF ablation: feasibility in an animal model. Int J Hyperthermia 28:55–61.
  • Fani F, Schena E, Saccomandi P, et al. (2014). CT-based thermometry: an overview. Int J Hyperthermia 30:219–27.
  • Byrd JF, Agee N, McKillop IH, et al. (2011). Colour Doppler ultrasonography provides real-time microwave field visualisation in an ex vivo porcine model. HBP 13:400–3.
  • Dewall RJ, Varghese T, Brace CL. (2012). Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography. Med Phys 39:6692–700.
  • Bucci OM, Cavagnaro M, Crocco L, et al. Microwave ablation monitoring via microwave tomography: a numerical feasibility assessment. Accepted 10th European Conference on Antennas and Propagation (EuCAP) EuCAP’2016; 2016 Apr 10–15; Davos, Switzerland; 2016.
  • Wang P, Brace CL. System for monitoring thermal ablation using radiofrequency echoes. United States Patent Application. Publication No. US-2015-0005757. 2015 Jan 1. Available from: http://www.warf.org/documents/pubapps/P130294US01%20Published%20Application.pdf [last accessed 2016 Feb 21].
  • Andreano A, Huang Y, Meloni MF, et al. (2010). Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue. Med Phys 37:2967–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.