3,142
Views
43
CrossRef citations to date
0
Altmetric
Reviews

Interstitial microwave treatment for cancer: historical basis and current techniques in antenna design and performance

&
Pages 3-14 | Received 23 Mar 2016, Accepted 16 Jul 2016, Published online: 28 Aug 2016

References

  • Strohbehn JW, Bowers ED, Walsh JE, et al. (1979). An invasive microwave antenna for locally-induced hyperthermia for cancer therapy. J Microw Power 14:339–50.
  • Douple EB, Srohbehn JW, Bowers ED, et al. (1979). Cancer therapy with localized hyperthermia using an invasive microwave system. J Microw Power 14:181–86.
  • Ryan TP, Turner PF, Hamilton B. (2010). Interstitial microwave transition from hyperthermia to ablation: historical perspectives and current trends in thermal therapy. Int J Hyperthermia 26:415–33.
  • Sapareto SA, Dewey WC. (1984). Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800.
  • Hahn GM, Ning SC, Elizaga M, et al. (1989). A comparison of thermal responses of human and rodent cells. Int J Radiat Biol 56:817–25.
  • Ahmed M, Brace CL, Lee FT Jr, et al. (2011). Principles of and advances in percutaneous ablation. Radiology 258:351–69.
  • Schwan HP, Foster KR. (1977). Microwave dielectric properties of tissue. Some comments on the rotational mobility of tissue water. Biophys J 17:193–97.
  • Stuchly MA. (1979). Interaction of radiofrequency and microwave radiation with living systems. A review of mechanisms. Radiat Environ Biophys 16:1–14.
  • Trembly B, Ryan T, Strohbehn JW. (1991). Physics of microwave hyperthermia. In: Interstitial hyperthermia: physics, biology and clinical aspects. New York: VSP Press; p. 11–98.
  • Garrean S, Hering J, Saied A, et al. (2009). Ultrasound monitoring of a novel microwave ablation (MWA) device in porcine liver: lessons learned and phenomena observed on ablative effects near major intrahepatic vessels. J Gastrointest Surg 13:334–40.
  • Chiang J, Willey BJ, Del Rio AM, et al. (2014). Predictors of thrombosis in hepatic vasculature during microwave tumor ablation of an in vivo porcine model. J Vasc Interv Radiol 25:1965–71.
  • Yu NC, Raman SS, Kim YJ, et al. (2008). Microwave liver ablation: influence of hepatic vein size on heat-sink effect in a porcine model. J Vasc Interv Radiol 19:1087–92.
  • Pennes HH. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122.
  • Ryan TP, Trembly BS, Roberts DW, et al. (1994). Brain hyperthermia: I. Interstitial microwave antenna array techniques – the Dartmouth experience. Int J Radiat Oncol Biol Phys 29:1065–78.
  • Brace CL, Laeseke PF, Sampson LA, et al. (2007). Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model. Radiology 244:151–56.
  • Simon CJ, Dupuy DE, Iannitti DA, et al. (2006). Intraoperative triple antenna hepatic microwave ablation. AJR Am J Roentgenol 187:W333–W340.
  • Knavel EM, Hinshaw JL, Lubner MG, et al. (2012). High-powered gas-cooled microwave ablation: shaft cooling creates an effective stick function without altering the ablation zone. AJR Am J Roentgenol 198:W260–W265.
  • Kuang M, Lu MD, Xie XY, et al. (2007). Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antenna – experimental and clinical studies. Radiology 242:914–24.
  • Yokoyama T, Egami K, Miyamoto M, et al. (2003). Percutaneous and laparoscopic approaches of radiofrequency ablation treatment for liver cancer. J Hepatobiliary Pancreat Surg 10:425–27.
  • Raut CP, Izzo F, Marra P, et al. (2005). Significant long-term survival after radiofrequency ablation of unresectable hepatocellular carcinoma in patients with cirrhosis. Ann Surg Oncol 12:616–28.
  • Jagad RB, Koshariya M, Kawamoto J, et al. (2008). Laparoscopic microwave ablation of liver tumors: our experience. Hepatogastroenterology 55:27–32.
  • Doss JD. (1975). Use of RF fields to produce hyperthermia in animal tumors. Proc Int Symp Cancer Ther Hyperthermia Radiat 226–27.
  • Taylor LS. (1978). Electromagnetic syringe. IEEE Trans Biomed Eng 25:303–4.
  • Taylor LS. (1980). Implantable radiators for cancer therapy by microwave hyperthermia. Proc IEEE 68:142–49.
  • Sneed PK, Stauffer PR, McDermott MW, et al. (1998). Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 40:287–95.
  • Sapozink MD, Boyd SD, Astrahan MA, et al. (1990). Transurethral hyperthermia for benign prostatic hyperplasia: preliminary clinical results. J Urol 143:944–9; discussion 949–50.
  • Gross EJ, Cetas TC, Stauffer PR, et al. (1990). Experimental assessment of phased-array heating of neck tumours. Int J Hyperthermia 6:453–74.
  • Coughlin CT, Douple EB, Strohbehn JW, et al. (1983). Interstitial hyperthermia in combination with brachytherapy. Radiology 148:285–88.
  • Sherar MD, Trachtenberg J, Davidson SRH, et al. (2004). Interstitial microwave thermal therapy and its application to the treatment of recurrent prostate cancer. Int J Hyperthermia 20:757–68.
  • Seegenschmiedt MH, Karlsson UL, Black P, et al. (1995). Thermoradiotherapy for brain tumors. Three cases of recurrent malignant astrocytoma and review of clinical experience. Am J Clin Oncol 18:510–18.
  • Overgaard J, Gonzalez Gonzalez D, Hulshof MC, et al. (1995). Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet 345:540–3.
  • Jones EL, Oleson JR, Prosnitz LR, et al. (2005). Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol 23:3079–85.
  • Emami B, Scott C, Perez CA, et al. (1996). Phase III study of interstitial thermoradiotherapy compared with interstitial radiotherapy alone in the treatment of recurrent or persistent human tumors. A prospectively controlled randomized study by the Radiation Therapy Group. Int J Radiat Oncol Biol Phys 34:1097–104.
  • Trembly BS. (1985). The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Biomed Eng 32:152–7.
  • Ryan TP, Wikoff RP, Hoopes PJ. (1991). Design of an automated temperature mapping system for ultrasound or microwave hyperthermia. J Biomed Eng 13:348–54.
  • King RWP, Trembly BS, Strohbehn JW. (1983). The electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microw Theory Tech 31:574–83.
  • Hamada L, Saito K, Yoshimura H, et al. (2000). Dielectric-loaded coaxial-slot antenna for interstitial microwave hyperthermia: longitudinal control of heating patterns. Int J Hyperthermia 16:219–29.
  • Ito K, Hyodo M, Shimura M, et al. (1990). Thin applicator having coaxial ring slots for interstitial microwave hyperthermia. Ant Prop Soc Int Symp 3:1233–6.
  • Pisa S, Cavagnaro M, Bernardi P, et al. (2001). A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modeling and experimental measurement. IEEE Trans Biomed Eng 48:599–601.
  • Wong TZ, Trembly BS. (1994). A theoretical model for input impedance of interstitial microwave antennas with choke. Int J Radiat Oncol Biol Phys 28:673–82.
  • Camart JC, Dubois L, Fabre JJ, et al. (1993). 915 MHz microwave interstitial hyperthermia. Part II: array of phase-monitored antennas. Int J Hyperthermia 9:445–54.
  • Hurter W, Reinbold F, Lorenz W. (1991). A dipole antenna for interstitial microwave hyperthermia. IEEE Trans Microw Theory Tech 39:1048–54.
  • James BJ, Strohbehn JW, Mechling JA, et al. (1989). The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia. Int J Hyperthermia 5:733–47.
  • Ryan TP, Mechling JA, Strohbehn JW. (1990). Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory. Int J Radiat Oncol Biol Phys 19:377–87.
  • Liu RL, Zhang EY, Gross EJ, et al. (1991). Heating pattern of helical microwave intracavitary oesophageal applicator. Int J Hyperthermia 7:577–86.
  • Hagmann MJ, Levin RL, Turner PF. (1985). A comparison of the annular phased array to helical coil applicators for limb and torso hyperthermia. IEEE Trans Biomed Eng 32:916–27.
  • Satoh T, Stauffer PR, Fike JR. (1988). Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 15:1209–18.
  • Ryan TP. (1991). Comparison of six microwave antennas for hyperthermia treatment of cancer: SAR results for single antennas and arrays. Int J Radiat Oncol Biol Phys 21:403–13.
  • Scheiblich J, Petrowicz O. (1982). Radiofrequency-induced hyperthermia in the prostate. J Microw Power 17:203–9.
  • Leib Z, Rothem A, Lev A, et al. (1986). Histopathological observations in the canine prostate treated by local microwave hyperthermia. Prostate 8:93–102.
  • Eppert V, Trembly BS, Richter HJ. Air cooling for an interstitial microwave hyperthermia antenna: theory and experiment. (1991). IEEE Trans Biomed Eng 38:450–60.
  • Trembly BS, Douple EB, Hoopes PJ. (1991). The effect of air cooling on the radial temperature distribution of a single microwave hyperthermia antenna in vivo. Int J Hyperthermia 7:343–54.
  • Fan Q-Y, Ma B-A, Zhou Y, et al. (2003). Bone tumors of the extremities or pelvis treated by microwave-induced hyperthermia. Clin Orthop Relat Res 406:165–75.
  • Miura T, Haida K, Haida S, et al. (1982). Intraarterial infusion chemotherapy in combination with 2450-MHz microwave hyperthermia for cancer of the head of the pancreas. Prog Clin Biol Res 107:767–74.
  • Trotter JM, Edis AJ, Blackwell JB, et al. (1996). Adjuvant VHF therapy in locally recurrent and primary unresectable rectal cancer. Australas Radiol 40:298–305.
  • Bicher HI, Wolfstein RS, Lewinsky BS, et al. (1986). Microwave hyperthermia as an adjunct to radiation therapy: summary experience of 256 multifraction treatment cases. Int J Radiat Oncol Biol Phys 12:1667–71.
  • Lyons BE, Britt RH, Strohbehn JW. (1984). Localized hyperthermia in the treatment of malignant brain tumors using an interstitial microwave antenna array. IEEE Trans Biomed Eng 31:53–62.
  • Salcman M, Samaras GM. (1983). Interstitial microwave hyperthermia for brain tumors. Results of a phase-1 clinical trial. J Neurooncol 1:225–36.
  • Stauffer PR, van Rhoon GC. (2016). Overview of bladder heating technology: matching capabilities with clinical requirements. Int J Hyperthermia 32:407–16.
  • Trembly BS, Wilson AH, Sullivan MJ, et al. (1986). Control of the SAR pattern within an interstitial microwave array through variation of antenna driving phase. IEEE Trans Microw Theory Tech 34:568–71.
  • Ryan TP, Hoopes PJ, Taylor JH, et al. (1991). Experimental brain hyperthermia: techniques for heat delivery and thermometry. Int J Radiat Oncol Biol Phys 20:739–50.
  • Clibbon KL, McCowen A, Hand JW. (1993). SAR distributions in interstitial microwave antenna arrays with a single dipole displacement. IEEE Trans Biomed Eng 40:925–32.
  • Brace CL. (2009). Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol 38:135–43.
  • Simon CJ, Dupuy DE, Mayo-Smith WW. (2005). Microwave ablation: principles and applications. Radiographics 25(Suppl 1): S69–S83.
  • He X, Bischof JC. (2005). The kinetics of thermal injury in human renal carcinoma cells. Ann Biomed Eng 33:502–10.
  • Mertyna P, Hines-Peralta A, Liu Z, et al. (2007). Radiofrequency ablation: variability in heat sensitivity in tumors and tissues. J Vasc Interv Radiol 18:647–54.
  • Ji Z, Brace CL. (2011). Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation. Phys Med Biol 56:5249–64.
  • Yang D, Converse MC, Mahvi DM, et al. (2007). Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans Biomed Eng 54:1382–8.
  • Brace CL, Diaz TA, Hinshaw JL, et al. (2010). Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung. J Vasc Interv Radiol 21:1280–6.
  • Sommer CM, Sommer SA, Mokry T, et al. (2013). Quantification of tissue shrinkage and dehydration caused by microwave ablation: experimental study in kidneys for the estimation of effective coagulation volume. J Vasc Interv Radiol 24:1241–8.
  • Schramm W, Yang D, Haemmerich D. (2006). Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Conf Proc IEEE Eng Med Biol Soc 1:5013–16.
  • Andreano A, Brace CL. (2013). A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver. Cardiovasc Intervent Radiol 36:505–11.
  • Andreano A, Huang Y, Meloni MF, et al. (2010). Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue. Med Phys 37:2967–73.
  • Kanaoka Y, Yoshida C, Fukuda T, et al. (2009). Transcervical microwave myolysis for uterine myomas assisted by transvaginal ultrasonic guidance. J Obstet Gynaecol Res 35:145–51.
  • Wasser EJ, Dupuy DE. (2008). Microwave ablation in the treatment of primary lung tumors. Semin Respir Crit Care Med 29:384–94.
  • Liang P, Wang Y, Zhang D, et al. (2008). Ultrasound guided percutaneous microwave ablation for small renal cancer: initial experience. J Urol 180:844–8; discussion 848.
  • Moreland AJ, Ziemlewicz TJ, Best SL, et al. (2014). High-powered microwave ablation of t1a renal cell carcinoma: safety and initial clinical evaluation. J Endourol 28:1046–52.
  • Pusceddu C, Sotgia B, Fele RM, et al. (2013). Treatment of bone metastases with microwave thermal ablation. J Vasc Interv Radiol 24:229–33.
  • Kastler A, Alnassan H, Aubry S, et al. (2014). Microwave thermal ablation of spinal metastatic bone tumors. J Vasc Interv Radiol 25:1470–5.
  • Lygidakis NJ, Sharma SK, Papastratis P, et al. (2007). Microwave ablation in locally advanced pancreatic carcinoma – a new look. Hepatogastroenterology 54:1305–10.
  • Grieco CA, Simon CJ, Mayo-Smith WW, et al. (2007). Image-guided percutaneous thermal ablation for the palliative treatment of chest wall masses. Am J Clin Oncol 30:361–7.
  • Wang Y, Liang P, Yu X, et al. (2009). Ultrasound-guided percutaneous microwave ablation of adrenal metastasis: preliminary results. Int J Hyperthermia 25:455–61.
  • Dong BW, Liang P, Yu XL, et al. (1998). Sonographically guided microwave coagulation treatment of liver cancer: an experimental and clinical study. AJR Am J Roentgenol 171:449–54.
  • Duan YQ, Gao YY, Ni XX, et al. (2007). Changes in peripheral lymphocyte subsets in patients after partial microwave ablation of the spleen for secondary splenomegaly and hypersplenism: a preliminary study. Int J Hyperthermia 23:467–72.
  • Belfiore MP, Sciandra M, Romano F, et al. (2015). Preliminary results in unresectable head and neck cancer treated by radiofrequency and microwave ablation: feasibility, efficacy, and safety. J Vasc Interv Radiol 26:1189–96.
  • Fornage BD, Hwang RF. (2014). Current status of imaging-guided percutaneous ablation of breast cancer. AJR Am J Roentgenol 203:442–8.
  • Gonzalez RR, Te AE. (2003). How do transurethral needle ablation of the prostate and transurethral microwave thermotherapy compare with transurethral prostatectomy? Curr Urol Rep 4:297–306.
  • Sato M, Watanabe Y, Ueda S, et al. (1996). Microwave coagulation therapy for hepatocellular carcinoma. Gastroenterology 110:1507–14.
  • Shibata T, Murakami T, Ogata N. (2000). Percutaneous microwave coagulation therapy for patients with primary and metastatic hepatic tumors during interruption of hepatic blood flow. Cancer 88:302–11.
  • Murakami R, Yoshimatsu S, Yamashita Y, et al. (1995). Treatment of hepatocellular carcinoma: value of percutaneous microwave coagulation. AJR Am J Roentgenol 164:1159–64.
  • Rhim H. (2004). Review of Asian experience of thermal ablation techniques and clinical practice. Int J Hyperthermia 20:699–712.
  • Martin RCG, Scoggins CR, McMasters KM. (2007). Microwave hepatic ablation: initial experience of safety and efficacy. J Surg Oncol 96:481–6.
  • Castle SM, Salas N, Leveillee RJ. (2011). Initial experience using microwave ablation therapy for renal tumor treatment: 18-month follow-up. Urology 77:792–7.
  • Ziemlewicz TJ, Hinshaw JL, Lubner MG, et al. (2015). Percutaneous microwave ablation of hepatocellular carcinoma with a gas-cooled system: initial clinical results with 107 tumors. J Vasc Interv Radiol 26:62–8.
  • Berber E. (2016). Laparoscopic microwave thermosphere ablation of malignant liver tumors: an initial clinical evaluation. Surg Endosc 30:692–8.
  • Livraghi T, Meloni F, Solbiati L, et al. (2012). Complications of microwave ablation for liver tumors: results of a multicenter study. Cardiovasc Intervent Radiol 35:868–74.
  • Bertram JM, Yang D, Converse MC, et al. (2006). A review of coaxial-based interstitial antennas for hepatic microwave ablation. Crit Rev Biomed Eng 34:187–213.
  • Longo I, Gentili G, Cerretelli M, et al. (2003). A coaxial antenna with miniaturized choke for minimally invasive interstitial heating. IEEE Trans Microw Theory Tech 50:82–8.
  • Lubner MG, Ziemlewicz TJ, Hinshaw JL, et al. (2014). Creation of short microwave ablation zones: in vivo characterization of single and paired modified triaxial antennas. J Vasc Interv Radiol 25:1633–40.
  • Brace CL. (2011). Dual-slot antennas for microwave tissue heating: parametric design analysis and experimental validation. Med Phys 38:4232–40.
  • Yang D, Bertram JM, Converse MC, et al. (2006). A floating sleeve antenna yields localized hepatic microwave ablation. IEEE Trans Biomed Eng 53:533–7.
  • Strickland AD, Clegg PJ, Cronin NJ, et al. (2002). Experimental study of large-volume microwave ablation in the liver. Br J Surg 89:1003–7.
  • Jones RP, Kitteringham NR, Terlizzo M, et al. (2012). Microwave ablation of ex vivo human liver and colorectal liver metastases with a novel 14.5 GHz generator. Int J Hyperthermia 28:43–54.
  • Luyen H, Gao F, Hagness SC, et al. (2014). Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver. IEEE Trans Biomed Eng 61:1702–10.
  • McWilliams BT, Schnell EE, Curto S, et al. (2015). A directional interstitial antenna for microwave tissue ablation: theoretical and experimental investigation. IEEE Trans Biomed Eng 62:2144–50.
  • Durick NA, Laeseke PF, Broderick LS, et al. (2008). Microwave ablation with triaxial antennas tuned for lung: results in an in vivo porcine model. Radiology 247:80–7.
  • He N, Wang W, Ji Z, et al. (2010). Microwave ablation: an experimental comparative study on internally cooled antenna versus non-internally cooled antenna in liver models. Acad Radiol 17:894–9.
  • Hines-Peralta AU, Pirani N, Clegg P, et al. (2006). Microwave ablation: results with a 2.45-GHz applicator in ex vivo bovine and in vivo porcine liver. Radiology 239:94–102.
  • Bedoya M, Muñoz del Rio A, Chiang J, et al. (2014). Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model. Med Phys 41:123301.
  • Biffi Gentili G, Ignesti C. (2015). Dual applicator thermal ablation at 2.45 GHz: a numerical comparison and experiments on synchronous versus asynchronous and switched-mode feeding. Int J Hyperthermia 31:528–37.
  • Harari CM, Magagna M, Bedoya M, et al. (2016). Microwave ablation: comparison of simultaneous and sequential activation of multiple antennas in liver model systems. Radiology 278:95–103.
  • Oshima F, Yamakado K, Nakatsuka A, et al. (2008). Simultaneous microwave ablation using multiple antennas in explanted bovine livers: relationship between ablative zone and antenna. Radiat Med 26:408–14.
  • Brace CL. (2010). Microwave tissue ablation: biophysics, technology and applications. Crit Rev Biomed Eng 38:65–78.
  • Boutros C, Somasundar P, Garrean S, et al. (2010). Microwave coagulation therapy for hepatic tumors: review of the literature and critical analysis. Surg Oncol 19:e22–e32.
  • Facciorusso A, Di Maso M, Muscatiello N. (2016). Microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma: a systematic review and meta-analysis. Int J Hyperthermia 32:339–44.
  • Winokur RS, Du JY, Pua BB, et al. (2014). Characterization of in vivo ablation zones following percutaneous microwave ablation of the liver with two commercially available devices: are manufacturer published reference values useful? J Vasc Interv Radiol 25:1939–46.
  • Hoffmann R, Rempp H, Erhard L, et al. (2013). Comparison of four microwave ablation devices: an experimental study in ex vivo bovine liver. Radiology 268:89–97.
  • Cavagnaro M, Amabile C, Cassarino S, et al. (2015). Influence of the target tissue size on the shape of ex vivo microwave ablation zones. Int J Hyperthermia 31:48–57.
  • Liang P-C, Lai H-S, Shih TT-F, et al. (2015). Initial institutional experience of uncooled single-antenna microwave ablation for large hepatocellular carcinoma. Clin Radiol 70:e35–e40.
  • Ratanaprasatporn L, Charpentier KP, Resnick M, et al. (2013). Intra-operative microwave ablation of liver malignancies with tumour permittivity feedback control: a prospective ablate and resect study. HPB (Oxford) 15:997–1001.
  • Medhat E, Abdel Aziz A, Nabeel M, et al. (2015). Value of microwave ablation in treatment of large lesions of hepatocellular carcinoma. J Dig Dis 16:456–63.
  • Ziemlewicz TJ, Wells SA, Lubner MA, et al. (2014). Microwave ablation of giant hepatic cavernous hemangiomas. Cardiovasc Intervent Radiol 37:1299–1305.
  • Cavagnaro M, Amabile C, Bernardi P, et al. (2011). A minimally invasive antenna for microwave ablation therapies: design, performances, and experimental assessment. IEEE Trans Biomed Eng 58:949–59.
  • Chehab MA, Brinjikji W, Copelan A, et al. (2015). Navigational tools for interventional radiology and interventional oncology applications. Semin Intervent Radiol 32:416–27.
  • Koethe Y, Xu S, Velusamy G, et al. (2014). Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study. Eur Radiol 24:723–30.
  • Miano R, De Nunzio C, Asimakopoulos AD, et al. (2008). Treatment options for benign prostatic hyperplasia in older men. Med Sci Monit 14:RA94–RA102.
  • Wood BJ, Locklin JK, Viswanathan A, et al. (2007). Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J Vasc Interv Radiol 18:9–24.
  • Venkatesan AM, Kadoury S, Abi-Jaoudeh N, et al. (2011). Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology 260:848–56.
  • Kagadis GC, Katsanos K, Karnabatidis D, et al. (2012). Emerging technologies for image guidance and device navigation in interventional radiology. Med Phys 39:5768–81.
  • Hung AJ, Ma Y, Zehnder P, et al. (2012). Percutaneous radiofrequency ablation of virtual tumours in canine kidney using Global Positioning System-like technology. BJU Int 109:1398–403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.