3,460
Views
86
CrossRef citations to date
0
Altmetric
Original Articles

Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements

, , , , , , , , , , , , , , , , , & show all
Pages 471-482 | Received 09 Nov 2016, Accepted 26 Dec 2016, Published online: 31 Jan 2017

References

  • Atzelsberg Circle for Clinical Hyperthermia. Available from: http://atzelsbergerkreis.de/ [last accessed 14 Jan 2017].
  • ESHO. Available from: www.esho.info [last accessed 14 Jan 2017].
  • STM. Available from: http://www.thermaltherapy.org/eBusSFTM/ [last accessed 14 Jan 2017].
  • Bruggmoser G. (2012). Some aspects of quality management in deep regional hyperthermia. Int J Hyperthermia 28:562–9.
  • Bruggmoser G, Bauchowitz S, Canters R, et al. (2012). Atzelsberg Research Group; European Society for Hyperthermic Oncology. Guideline for the clinical application documentation and analysis of clinical studies for regional deep hyperthermia: quality management in regional deep hyperthermia. Strahlenther Onkol 188 (Suppl 2):198–211.
  • Perez CA, Gillespie B, Pajak T, et al. (1989). Quality assurance problems in clinical hyperthermia and their impact on therapeutic outcome: a report by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 16:551–8.
  • Hand JW, Lagendijk JJ, Bach Andersen J, Bolomey JC. (1989). Quality assurance guidelines for ESHO protocols. Int J Hyperthermia 5:421–8.
  • Dewhirst MW, Phillips TL, Samulski TV, et al. (1990). RTOG quality assurance guidelines for clinical trials using hyperthermia. Int J Radiat Oncol Biol Phys 18:1249–59.
  • Dobšíček TH, Crezee J, Schmidt M, et al. (2016). Quality assurance guidelines for the application of superficial hyperthermia: II. Technical requirements for heating devices, Strahlentherapie und Onkologie (Submitted).
  • Hua Y, Ma S, Fu Z, et al. (2011). Intracavity hyperthermia in nasopharyngeal cancer: a phase III clinical study. Int J Hyperthermia 27:180–6.
  • Issels RD. (2008). Hyperthermia adds to chemotherapy. Eur J Cancer 44:2546–54.
  • Issels RD, Lindner LH, Verweij J, et al. (2010). Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11:561–70.
  • Wessalowski R, Schneider DT, Mils O, et al. (2013). Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: an open-label, non-randomised, single-institution, phase 2 study. Lancet Oncol 14:843–52.
  • Tilly W, Gellermann J, Graf R, et al. (2005). Regional hyperthermia in conjunction with definitive radiotherapy against recurrent or locally advanced prostate cancer T3 pN0 M0. Strahlenther Onkol 181:35–41.
  • Van der Zee J, Gonzalez Gonzalez D, Van Rhoon GC, et al. (2000). Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355:1119–25.
  • Van der Zee J. (2002). Heating the patient: a promising approach? Ann Oncol 13:1173–84.
  • Van der Zee J, Van der Holt B, Rietveld PJM, et al. (1999). Reirradiation combined with hyperthermia in recurrent breast cancer results in a worthwhile local palliation. Br J Cancer 79:483–90.
  • Lee HK, Antell AG, Perez CA, et al. (1998). Superficial hyperthermia and irradiation for recurrent breast carcinoma of the chest wall: Prognostic factors in 196 tumors. Int J Radiat Oncol Biol Phys 40:365–75.
  • Kapp DS, Cox RS. (1995). Thermal treatment parameters are most predictive of outcome in patients with single tumor nodules per treatment field in recurrent adenocarcinoma of the breast. Int J Radiat Oncol Biol Phys 33:887–99.
  • Oleson JR, Samulski TV, Leopold KA, et al. (1993). Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. Int J Radiat Oncol Biol Phys 25:289–97.
  • Sherar M, Liu FF, Pintilie M, et al. (1997). Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiat Oncol Biol Phys 39:371–80.
  • Issels RD, Prenninger SW, Nagele A. (1990). Ifosfamide plus etoposide combined with regional hyperthermia in patients with locally advanced sarcomas: a phase II study. J Clin Oncol 8:1818–29.
  • Fotopoulou C, Cho CH, Kraetschell R, et al. (2010). Regional abdominal hyperthermia combined with systemic chemotherapy for the treatment of patients with ovarium cancer relapse: results of a pilot study. Int J Hyperthermia 26:118–26.
  • Franckena M, Fatehi D, de Bruijne M, et al. (2009). Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer 45:1969–78.
  • Rau B, Wust P, Tilly W, et al. (2000). Preoperative radio-chemotherapy in locally advanced recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters. Int J Radiat Oncol Biol Phys 48:381–91.
  • Gellermann J, Hildebrandt B, Issels R, et al. (2000). Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry. Cancer 107:1373–82.
  • Jones EL, Oleson JR, Prosnitz LR, et al. (2005). Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol 23:3079–85.
  • Linthorst M, van Geel AN, Baaijens M, et al. (2013). Re-irradiation and hyperthermia after surgery for recurrent breast cancer. Radiother Oncol 109:188–93.
  • van Rhoon GC. (2016). Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring? Int J Hyperthermia 32:50–62.
  • De Bruijne M, van der Zee J, Ameziane A, van Rhoon GC. (2011). Quality control of superficial hyperthermia by treatment evaluation. Int J Hyperthermia 27:199–213.
  • Van Rhoon GC. (2013). External electromagnetic methods and devices. In: Moros EG, ed. Physics of thermal therapy: fundamentals and clinical applications. Boca Raton (FL): CRC Press, Taylor and Francis Group, 139–58.
  • Datta NR, Puric E, Klingbiel D, Gomez S, Bodis S. (2016). Hyperthermia and radiation therapy in locoregional recurrent breast cancers: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys 94:1073–87.
  • Cihoric N, Tsikkinis A, van Rhoon G, et al. (2015). Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperthermia 31:609–14.
  • Moros EG, Peñagaricano J, Novák P, et al. (2010). Present and future technology for simultaneous superficial thermoradiotherapy of breast cancer. Int J Hyperthermia 26:699–709.
  • Varma S, Myerson R, Moros E, et al. (2012). Simultaneous radiotherapy and superficial hyperthermia for high-risk breast carcinoma: a randomised comparison of treatment sequelae in heated versus non-heated sectors of the chest wall hyperthermia. Int J Hyperthermia 28:583–90.
  • Kosterev VV, Kramer-Ageev EA, Mazokhin VN, et al. (2015). Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. Int J Hyperthermia 31:443–52.
  • Linthorst M, Baaijens M, Wiggenraad R, et al. (2015). Local control rate after the combination of re-irradiation and hyperthermia for irresectable recurrent breast cancer: results in 248 patients. Radiother Oncol 117:217–22.
  • Korshuize-van Straten L, Kolff MW, Bakker A, Crezee J. (2015). Time-temperature relationship of blistering during superficial hyperthermia. Proceedings of Annual Meeting ESHO, 24–26 June, Zurich.
  • Yarmolenko PS, Moon EJ, Landon C, et al. (2011). Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia 27:320–43.
  • Linthorst M, van Rhoon GC, van Geel AN, et al. (2012). The tolerance of reirradiation and hyperthermia in breast cancer patients with reconstructions. Int J Hyperthermia 28:267–77.
  • Wust P, Stahl H, Löffel J, et al. (1995). Clinical, physiological and anatomical determinants for radiofrequency hyperthermia. Int J Hyperthermia 11:151–67.
  • Stauffer PR. (2005). Evolving technology for thermal therapy of cancer. Int J Hyperthermia 21:731–44.
  • Hoffmann G. (2007). Principles and working mechanisms of water-filtered infrared-A (wIRA) in relation to wound healing. GMS Krankenhhyg Interdiszip 2:Doc54.
  • Hand JW. (1987). Electromagnetic applicators for non-invasive local hyperthermia. In: Field SB, Franconi C, eds. Physics and technology of hyperthermia. NATO ASI series. Dordrecht-Boston-Lancaster: Martinus Nijhof Publishers, 189–210.
  • Lee ER. (1995). Electromagnetic superficial heating technology. In: Seegenschmiedt MH, Fessenden P, Vernon CC, eds. Principles and practice of thermoradiotherapy and thermochemotherapy, Vol. 1, Biology, physiology, physics. Heidelberg (Germany), New York: Springer Verlag GmbH, 193–217.
  • van Rhoon GC, Rietveld PJ, van der Zee J. (1998). A 433 MHz Lucite cone waveguide applicator for superficial hyperthermia. Int J Hyperthermia 14:13–27.
  • Gelvich EA, Mazokhin VN. (2002). Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves. IEEE Trans Biomed Eng 49:1015–23.
  • Bach Andersen J, Baurn A, Harmark K, et al. (1984). A hyperthermia system using a new type of inductive applicator. Ieee Trans Biomed Eng 31:21–7.
  • Gopal MK, Hand JW, Lumori MLD, et al. (1992). Current sheet applicator arrays for superficial hyperthermia of chestwall lesions. Int J Hyperthermia 8:227–40.
  • Stauffer PR, Leoncini M, Manfrini V, et al. (1995). Dual concentric conductor radiator for microwave hyperthermia with improved field uniformity to periphery of aperture. IEICE Trans Commun E78-B:826–35.
  • Samulski TV, Fessenden P, Lee ER, et al. (1990). Spiral microstrip hyperthermia applicators: technical design and clinical performance. Int J Radiat Oncol Biol Phys 18:233–42.
  • Lee ER, Wilsey TR, Tarczy-Hornoch P, et al. (1992). Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia. IEEE Trans Biomed Eng 39:470–83.
  • Stauffer PR, Maccarini P, Arunachalam K, et al. (2010). Conformal microwave array (CMA) applicators for hyperthermia of diffuse chest wall recurrence. Int J Hyperthermia 26:686–98.
  • Johnson JE, Neuman DG, Maccarini PF, et al. (2006). Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia. Int J Hyperthermia 22:475–90.
  • Guy AW, Lehmann JC, Stonebridge JB. (1974). Therapeutic applications of electromagnetic power. Proc IEEE 62:55–75.
  • Hand JW, ter Haar G. (1981). Heating techniques in hyperthermia. I. Introduction and assessment of techniques. Br J Radiol 54:443–6.
  • Tanaka A, Kuroda M, Inamura K, et al. (1994). A new capacitive heating applicator for the simultaneous radiohyperthermotherapy of superficial and shallow-seated tumors. Acta Med Okayama 48:211–6.
  • Kato H, Kondo M, Imada H, et al. (2013). Quality assurance: recommended guidelines for safe heating by capacitive-type heating technique to treat patients with metallic implants. Int J Hyperthermia 29:194–205.
  • Kikuchi M, Amemiya Y, Egawa S, et al. (1993). Guide to the use of hyperthermic equipment. 1. Capacitively-coupled heating. Int J Hyperthermia 9:187–203.
  • Kok HP, Crezee J. (2017). A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Int J Hyperthermia [Epub ahead of print]. doi: 10.1080/02656736.2016.1268726
  • Diederich CJ, Hynynen K. (1999). Ultrasound technology for hyperthermia. Ultrasound Med Biol 25:871–87.
  • Hynynen K. (1995). Ultrasound heating technology. In: Seegenschmiedt MH, Fessenden P, Vernon CC, eds. Thermoradiotherapy and thermochemotherapy. Heidelberg (Germany): Springer-Verlag, 253–77.
  • Bull V, ter Haar G. (2013). The physics of ultrasound energy sources. In: Moros E, ed. Physics of thermal therapy: fundamentals and clinical applications. Boca Raton (FL): CRC Press Taylor & Francis Group, 75–93.
  • Ogilvie GK, Reynolds HA, Richardson BC, et al. (1990). Performance of a multi-sector ultrasound hyperthermia applicator and control system: in vivo studies. Int J Hyperthermia 6:697–705.
  • Samulski TV, Grant WJ, Oleson JR, et al. (1990). Clinical experience with a multi-element ultrasonic hyperthermia system: analysis of treatment temperatures. Int J Hyperthermia 6:909–22.
  • Vaupel P, Kelleher DK, Krüger W. (1992). Water-filtered infrared-A radiation: a novel technique to heat superficial tumors. Strahlenther Onkol 168:633–9.
  • Vaupel P, Krüger W. (1995). Wärmetherapie mit wassergefilterter Infrarot-A-Strahlung, Grundlagen und Anwendungsmöglichkeiten, 2. Auflage, Hippokrates, Stuttgart.
  • Seegenschmiedt MH, Klautke G, Walther E, et al. (1996). Wassergefilterte Infrarot-A-Hyperthermie, kombiniert mit Radiotherapie bei fortgeschrittenen und rezidivierten tumoren. Strahlenter Onkol 172:475–84.
  • Germond JF, Wolf E, Berz J, Berz R. (2011). Thermography guided Irradiation using Water-filtered Infrared-A (wIRA) and radiotherapy on recurrent breast cancer: first experiences and temperature analysis. Thermology Int 21:47–53.
  • Notter M, Piazena H, Vaupel P. (2016). Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: a retrospective study of 73 patients. Int J Hyperthermia 1–10. [Epub ahead of print]. doi: 10.1080/02656736.2016.1235731
  • Brezovich IA, Lilly MB, Durant JR, Richards DB. (1981). A practical system for clinical radiofrequency hyperthermia. Int J Radiat Oncol Biol Phys 7:423–30.
  • Reddy NMS, Shanta V, Krishnamurthi S. (1986). On minimisation of toxicity to skin during capacitive radio-frequency hyperthermia. Br J Radiol 59:1129–31.
  • van der Gaag ML, De Bruijne M, Samaras T, et al. (2006). Development of a guideline for the water bolus temperature in superficial hyperthermia. Int J Hyperthermia 22:637–56.
  • Arunachalam K, Maccarini PF, Craciunescu OI, et al. (2010). Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence. Phys Med Biol 55:1949–69.
  • Arunachalam K, Maccarini P, Juang T, et al. (2008). Performance evaluation of a conformal thermal monitoring sheet sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments. Int J Hyperthermia 24:313–25.
  • Lee ER, Kapp DS, Lohrbach AW, Sokol JW. (1994). Influence of water bolus temperature on measured skin surface and intradermal temperatures. Int J Hyperthermia 10: 59–72.
  • Pennes HH. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122.
  • de Bruijne M, Samaras T, Bakker JF, van Rhoon GC. (2006). Effects of water bolus size, shape and configuration on the SAR distribution pattern of the Lucite cone applicator. Int J Hyperthermia 22:15–28.
  • Neuman DG, Stauffer PR, Jacobsen S, Rossetto F. (2002). SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators. Int J Hyperthermia 18:180–93.
  • Gelvich EA, Mazokhin VN. (2000). Resonance effects in applicator water boluses and their influence on SAR distribution patterns. Int J Hyperthermia 16:113–28.
  • Rossetto F, Diederich CJ, Stauffer PR. (2000). Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation. Med Phys 27:745–53.
  • Chan KW, Chou CK, McDougall JA, Luk KH. (1988). Perturbations due to the use of catheters with non-perturbing thermometry probes. Int J Hyperthermia 4:699–702.
  • Cetas TC. (1990). Thermometry. In: Field SB, Hand JW, eds. An introduction to the practical aspects of clinical hyperthermia. London, New York: Taylor & Francis, 423–77.
  • Stauffer PR. (2000). Thermal therapy techniques for skin and superficial tissue disease. In: Ryan TP, ed. A critical review, matching the energy source to the clinical need. Bellingham WA: SPIE Optical Engineering Press, 327–67.
  • de Leeuw AA, Crezee J, Lagendijk JJ. (1993). Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. Int J Hyperthermia 9:685–97.
  • Chan KW, Chou CK, McDougall JA, Luk KH. (1988). Changes in heating patterns due to perturbations by thermometer probes at 915 and 434 MHz. Int J Hyperthermia 4:447–56.
  • Chan KW, Chou CK. (1993). Use of thermocouples in the intense fields of ferromagnetic implant hyperthermia. Int J Hyperthermia 9:831–48.
  • Hynynen K, Edwards DK. (1989). Temperature measurements during ultrasound hyperthermia. Med Phys 16:618–26.
  • Hynynen K, Martin CJ, Watmough DJ, Mallard JR. (1983). Errors in temperature measurement by thermocouple probes during ultrasound induced hyperthermia. Br J Radiol 56:969–70.
  • Dickinson RG. (1985). Thermal conduction errors of manganin-constantan thermocouple arrays. Phys Med Biol 30:445–53.
  • Waterman FM. (1990). Determination of the temperature artifact during ultrasound hyperthermia. Int J Hyperthermia North Am Hyperthermia Group 6:131–42.
  • Waterman FM. (1992). Estimation of temperature artifact from a short interruption in ultrasonic power. Int J Hyperthermia North Am Hyperthermia Group 8:395–400.
  • Waterman FM, Leeper JB. (1990). Temperature artifacts produced by thermocouples used in conjunction with 1 and 3 MHz ultrasound. Int J Hyperthermia North Am Hyperthermia Group 6:383–99.
  • Hoh LL, Waterman FM. (1995). Use of manganin-constantan thermocouples in thermometry units designed for copper-constantan thermocouples. Int J Hyperthermia 11:131–8.
  • Waterman FM, Hoh LL. (1995). A recommended revision in the RTOG thermometry guidelines for hyperthermia administered by ultrasound. Int J Hyperthermia 11:121–30.
  • Gerig LH, Szanto J, Raaphorst GP. (1992). On the spatial resolution of clinical thermometers. Med Phys 19:679–84.
  • Myerson RJ, Moros EG, Diederich CJ, et al. (2014). Components of a hyperthermia clinic: recommendations for staffing, equipment, and treatment monitoring. Int J Hyperthermia 30:1–5.
  • Bach Andersen J. (1987). Electromagnetic power deposition: inhomogeneous media, applicators and phased arrays. In: Field SB, Franconi C, ed. Physics and technology of hyperthermia. Dordrecht: Martinus Nijhoff, 159–88.
  • Lee ER, Sullivan DM, Kapp DS. (1992). Potential hazards of radiative electromagnetic hyperthermia in the presence of multiple metallic surgical clips. Int J Hyperthermia 8:809–17.
  • de Bruijne M, Wielheesen DH, van der Zee J, et al. (2007). Benefits of superficial hyperthermia treatment planning: five case studies. Int J Hyperthermia 23:417–29.
  • Trujillo-Romero CJ, Paulides MM, Drizdal T, van Rhoon GC. (2015). Impact of silicone and metal port-a-cath implants on superficial hyperthermia treatment quality. Int J Hyperthermia 31:15–22.
  • Kyriakou A, Christ A, Neufeld E, Kuster N. (2012). Local tissue temperature increase of a generic implant compared to the basic restrictions defined in safety guidelines. Bioelectromagnetics 33:366–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.