2,199
Views
60
CrossRef citations to date
0
Altmetric
Original Articles

Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz

, , , , , & show all
Pages 635-645 | Received 21 Jan 2016, Accepted 10 Feb 2017, Published online: 07 Mar 2017

References

  • Fry FJ, Barger JE. (1978). Acoustical properties of the human skull. J Acoust Soc Am 63:1576–90.
  • Tanter M, Pernot M, Aubry JF, et al. (2007). Compensating for bone interfaces and respiratory motion in High Intensity Focused Ultrasound. Int J Hyperthermia 23:141–51.
  • Kyriakou A, Neufeld E, Werner B, et al. (2014). A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. Int J Hyperthermia 30:36–46.
  • Pernot M, Aubry JF, Tanter M, et al. (2007). In vivo transcranial brain surgery with an ultrasonic time reversal mirror. J Neurosurg 106:1061–6.
  • Tanter M, Thomas JL, Fink M. (2000). Time reversal and the inverse filter. J Acoust Soc Am 108:223–34.
  • Flax SW, O’Donnell M. (1988). Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles. IEEE Trans Ultrason Ferroelectr Freq Control 35:758–67.
  • Clement GT, Hynynen K. (2002). Micro-receiver guided transcranial beam steering. IEEE Trans Ultrason Ferroelectr Freq Control 49:447–53.
  • Gâteau J, Marsac L, Pernot M, et al. (2010). Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature. IEEE Trans Biomed Eng 57:134–44.
  • Haworth KJ, Fowlkes JB, Carson PL, Kripfgans OD. (2008). Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization. Ultrasound Med Biol 34:435–45.
  • Gateau J, Aubry JF, Chauvet D, et al. (2011). In vivo bubble nucleation probability in sheep brain tissue. Phys Med Biol 56:7001–15.
  • Maxwell AD, Cain CA, Hall TL, et al. (2013). Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials. Ultrasound Med Biol 39:449–65.
  • Sun J, Hynynen K. (1999). The potential of transskull ultrasound therapy and surgery using the maximum available skull surface area. J Acoust Soc Am 105:2519–27.
  • Clement GT, Hynynen K. (2002). A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol 47:1219–36.
  • Clement GT, Sun J, Hynynen K. (2001). The role of internal reflection in transskull phase distortion. Ultrasonics 39:109–13.
  • Connor CW, Clement GT, Hynynen K. (2002). A unified model for the speed of sound in cranial bone based on genetic algorithm optimization. Phys Med Biol 47:3925–44.
  • Pichardo S, Sin VW, Hynynen K. (2011). Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls. Phys Med Biol 56:219–50.
  • Aubry JF, Tanter M, Pernot M, et al. (2003). Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 113:84–93.
  • Song J, Pulkkinen A, Huang Y, Hynynen K. (2012). Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study. IEEE Trans Biomed Eng 59:435–44.
  • Marquet F, Pernot M, Aubry JF, et al. (2009). Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results. Phys Med Biol 54:2597–613.
  • Chauvet D, Marsac L, Pernot M, et al. (2013). Targeting accuracy of transcranial magnetic resonance-guided high-intensity focused ultrasound brain therapy: a fresh cadaver model. J Neurosurg 118:1046–52.
  • Aubry JF, Tanter M, Gerber J, et al. (2001). Optimal focusing by spatio-temporal inverse filter. II. Experiments. Application to focusing through absorbing and reverberating media. J Acoust Soc Am 110:48–58.
  • Tanter M, Aubry JF, Gerber J, et al. (2001). Optimal focusing by spatio-temporal inverse filter. I. Basic principles. J Acoust Soc Am 110:37–47.
  • Ebbini ES, Cain CA. (1989). Multiple-focus ultrasound phased-array pattern synthesis: optimal driving-signal distributions for hyperthermia. IEEE Trans Ultrason Ferroelectr Freq Control 36:540–8.
  • Seip R, VanBaren P, Ebbini ES. (1994). Dynamic focusing in ultrasound hyperthermia treatments using implantable hydrophone arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 41:706–13.
  • OpenCT Indicator. Available from: http://ecatalog.elekta.com/neuroscience/stereotactic-neurosurgery/products/19233/20366/22338/20231/stereotactic-neurosurgery/complete-stereotactic-system/open-ct-indicator.aspx
  • Courant R, Friedrichs K, Lewy H. (1967). On the partial difference equations of mathematical physics. IBM J Res Dev 11:215–34.
  • Pulkkinen A, Werner B, Martin E, Hynynen K. (2014). Numerical simulations of clinical focused ultrasound functional neurosurgery. Phys Med Biol 59:1679–700.
  • Vignon F, Saez A, Aubry JF, et al. (2006). The stokes relations linking time reversal and the inverse filter. J Acoust Soc Am 119:1335–46.
  • Clement GT, White PJ, Hynynen K. (2004). Enhanced ultrasound transmission through the human skull using shear mode conversion. J Acoust Soc Am 115:1356–64.
  • Pinton G, Aubry JF, Bossy E, et al. (2012). Attenuation, scattering, and absorption of ultrasound in the skull bone. Med Phys 39:299–307.
  • Firouzi K, Cox BT, Treeby BE, Saffari N. (2012). A first-order k-space model for elastic wave propagation in heterogeneous media. J Acoust Soc Am 132:1271–83.
  • Pinton G, Aubry JF, Fink M, Tanter M. (2012). Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy. Med Phys 39:455–67.
  • Bossy E, Padilla F, Peyrin F, Laugier P. (2005). Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography. Phys Med Biol 50:5545–56.
  • Rühli FJ, Kuhn G, Evison R, et al. (2007). Diagnostic value of micro-CT in comparison with histology in the qualitative assessment of historical human skull bone pathologies. Am J Phys Anthropol 133:1099–111.
  • Cohen G. (2013). Higher-order numerical methods for transient wave equations. Berlin: Springer Science & Business Media.
  • Vyas U, Christensen D. (2012). Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method. IEEE Trans Ultrason Ferroelect Freq Control 59:1093–100.
  • Pinton GF, Dahl J, Rosenzweig S, Trahey GE. (2009). A heterogeneous nonlinear attenuating full-wave model of ultrasound. IEEE Trans Ultrason Ferroelect Freq Control 56:474–88.
  • Wang M, Zhou Y. (2016). Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (hifu). Int J Hyperthermia 32:569–82.
  • Pinton G, Aubry JF, Fink M, Tanter M. (2011). Effects of nonlinear ultrasound propagation on high intensity brain therapy. Med Phys 38:1207–16.
  • Zhao LY, Liu S, Chen ZG, et al. (2016). Cavitation enhances coagulated size during pulsed high-intensity focused ultrasound ablation in an isolated liver perfusion system. Int J Hyperthermia [Epub ahead of print]. doi: 10.1080/02656736.2016.1255918
  • O’Reilly MA, Hynynen K. (2015). Emerging non-cancer applications of therapeutic ultrasound. Int J Hyperthermia 31:310–8.
  • Khokhlova VA, Fowlkes JB, Roberts WW, et al. (2015). Histotripsy methods in mechanical disintegration of tissue: towards clinical applications. Int J Hyperthermia 31:145–62.
  • Aubry JF, Tanter M. (2015). MR-guided transcranial focused ultrasound chapter, therapeutic ultrasound, advances in experimental medicine and biology, Vol. 880, doi: 10.1007/978-3-319-22536-4_6, Cham, Switzerland: Springer International Publishing.
  • Liu N, Liutkus A, Aubry JF, et al. (2015). Random calibration for accelerating MR-ARFI guided ultrasonic focusing in transcranial therapy. Phys Med Biol 60:1069–85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.