4,761
Views
79
CrossRef citations to date
0
Altmetric
Original Articles

Planning, optimisation and evaluation of hyperthermia treatments

, &
Pages 593-607 | Received 31 Oct 2016, Accepted 10 Feb 2017, Published online: 08 Mar 2017

References

  • Van der Zee J, González González D, Van Rhoon GC, et al. (2000). Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355:1119–25.
  • Overgaard J, González González D, Hulshof MCCM, et al. (1995). Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet 345:540–3.
  • Vernon CC, Hand JW, Field S, et al. (1996). Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 35:731–44.
  • Longo TA, Gopalakrishna A, Tsivian M, et al. (2016). A systematic review of regional hyperthermia therapy in bladder cancer. Int J Hyperthermia 32:381–9.
  • Issels RD, Lindner LH, Verweij J, et al. (2010). Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11:561–70.
  • Crezee J, Van Haaren PMA, Westendorp H, et al. (2009). Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study. Int J Hyperthermia 25:581–92.
  • van Dijk JDP, Schneider CJ, van Os RM. (1990). Results of deep body hyperthermia with large waveguide radiators. Adv Exp Med Biol 267:315–19.
  • Turner P, Tumeh FA, Schaefermeyer T. (1989). BSD-2000 approach for deep local and regional hyperthermia: physics and technology. Strahlenther Onkol 165:738–41.
  • Gelvich EA, Mazokhin VN. (2002). Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves. Ieee Trans Biomed Eng 49:1015–23.
  • Gabriele P, Ferrara T, Baiotto B, et al. (2009). Radio hyperthermia for re-treatment of superficial tumours. Int J Hyperthermia 25:189–98.
  • Puric E, Heuberger J, Lomax N, Timm O, Bodis S. (2009). The benefit of thermoradiotherapy in the treatment of superficially localized tumors: experience with Bsd 500 microwave hyperthermia system. Strahlentherapie Onkol 185:648.
  • Kosterev VV, Kramer-Ageev EA, Mazokhin VN, et al. (2015). Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. Int J Hyperthermia 31:443–52.
  • Notter M, Piazena H, Vaupel P. (2016). Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: a retrospective study of 73 patients. Int J Hyperthermia 1–10, in press. doi: 10.1080/02656736.2016.1235731
  • Chu W, Staruch RM, Pichardo S, et al. (2016). Magnetic Resonance-Guided High-Intensity Focused Ultrasound Hyperthermia for Recurrent Rectal Cancer: MR Thermometry Evaluation and Preclinical Validation. Int J Radiat Oncol Biol Phys 95:1259–67.
  • Kouloulias V, Plataniotis G, Kouvaris J, et al. (2005). Chemoradiotherapy combined with intracavitary hyperthermia for anal cancer: feasibility and long-term results from a phase II randomized trial. Am J Clin Oncol 28:91–9.
  • Van Vulpen M, Raaymakers BW, Lagendijk JJW, et al. (2002). Three-dimensional controlled interstitial hyperthermia combined with radiotherapy for locally advanced prostate carcinoma – a feasibility study. Int J Radiat Oncol Biol Phys 53:116–26.
  • Wust P, Rau B, Gellerman J, et al. (1998). Radiochemotherapy and hyperthermia in the treatment of rectal cancer. Recent Results Cancer Res 146:175–191.
  • Oleson JR, Samulski TV, Leopold KA, et al. (1993). Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. Int J Radiat Oncol Biol Phys 25:289–97.
  • Franckena M, Fatehi D, de Bruijne M, et al. (2009). Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer 45:1969–78.
  • Crezee J, Lagendijk JJ. (1992). Temperature uniformity during hyperthermia: the impact of large vessels. Phys Med Biol 37:1321–37.
  • Kok HP, Gellermann J, Van den Berg CA, et al. (2013). Thermal modelling using discrete vasculature for thermal therapy: a review. Int J Hyperthermia 29:336–45.
  • Das SK, Clegg ST, Anscher MS, Samulski TV. (1995). Simulation of electromagnetically induced hyperthermia: a finite element gridding method. Int J Hyperthermia 11:797–808.
  • Chen X, Diederich CJ, Wootton JH, et al. (2010). Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia. Int J Hyperthermia 26:39–55.
  • Stalling D, Seebass M, Zockler M, Hege H. (2000). Hyperthermia treatment planning with HyperPlan – user’s manual. Technical report ZR 00-27, Konrad-Zuse-Zentrum fur Informationstechnik. www.zib.de/hege/pdf/ZR-00-27.pdf.
  • Van den Berg CAT, van de Kamer JB, De Leeuw AAC, et al. (2006). Towards patient specific thermal modelling of the prostate. Phys Med Biol 51:809–25.
  • Bol GH, Kotte AN, van der Heide UA, Lagendijk JJ. (2009). Simultaneous multi-modality ROI delineation in clinical practice. Comput Methods Programs Biomed 96:133–40.
  • Bree JD. (1998). A 3-D anatomy based treatment planning system for interstitial hyperthermia. PhD Thesis; Utrecht University.
  • Gamma E, Helm R, Johnson R, Vlissides J. (1995). Design patterns: elements of reusable object-oriented software. USA: Addison-Wesley.
  • van Leeuwen GM, Kotte AN, Lagendijk JJ. (1998). A flexible algorithm for construction of 3-D vessel networks for use in thermal modeling. IEEE Trans Biomed Eng 45:596–604.
  • Raaymakers BW, Kotte AN, Lagendijk JJ. (2000). How to apply a discrete vessel model in thermal simulations when only incomplete vessel data are available. Phys Med Biol 45:3385–401.
  • Kotte AN, van Wieringen N, Lagendijk JJ. (1998). Modelling tissue heating with ferromagnetic seeds. Phys Med Biol 43:105–20.
  • van Wieringen N, van Dijk JD, Nieuwenhuys GJ, et al. (1996). Power absorption and temperature control of multi-filament palladium-nickel thermoseeds for interstitial hyperthermia. Phys Med Biol 41:2367–80.
  • Taflove A, Hagness SC. (2000). Computational electrodynamics. 2nd ed. Boston, London: Artech House.
  • Berenger JP. (1994). A perfectly matched layer for the absorption of electromagnetic-waves. J Comput Phys 114:185–200.
  • de Bree J, van der Koijk JF, Lagendijk JJW. (1996). A 3-D SAR model for current source interstitial hyperthermia. IEEE Trans Biomed Eng 43:1038–45.
  • Pennes HH. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948. J Appl Physiol 1:93–122.
  • De Greef M, Kok HP, Correia D, et al. (2011). Uncertainty in hyperthermia treatment planning: the need for robust system design. Phys Med Biol 56:3233–50.
  • Kotte ANTJ, van Leeuwen GMJ, de Bree J, et al. (1996). A description of discrete vessel segments in thermal modelling of tissues. Phys Med Biol 41:865–84.
  • Kok HP, Van den Berg CAT, Bel A, Crezee J. (2013). Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks. Med Phys 40:103303.
  • van Leeuwen GM, Kotte AN, Crezee J, Lagendijk JJ. (1997). Tests of the geometrical description of blood vessels in a thermal model using counter-current geometries. Phys Med Biol 42:1515–32.
  • Bardati F, Borrani A, Gerardino A, Lovisolo GA. (1995). SAR optimization in a phased array radiofrequency hyperthermia system. Specific absorption rate. IEEE Trans Biomed Eng 42:1201–7.
  • Wiersma J, Van Maarseveen RAM, van Dijk JDP. (2002). A flexible optimization tool for hyperthermia treatments with RF phased array systems. Int J Hyperthermia 18:73–85.
  • Das SK, Clegg ST, Samulski TV. (1999). Computational techniques for fast hyperthermia temperature optimization. Med Phys 26:319–28.
  • Das SK, Clegg ST, Samulski TV. (1999). Electromagnetic thermal therapy power optimization for multiple source applicators. Int J Hyperthermia 15:291–308.
  • Kohler T, Maass P, Wust P, Seebass M. (2001). A fast algorithm to find optimal controls of multiantenna applicators in regional hyperthermia. Phys Med Biol 46:2503–14.
  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT. (1988). Numerical recipes in C. Cambridge, USA: Cambridge University Press.
  • Lawrence C, Zhou JL, Tits AL. (1997). User's guide for CFSQP version 2.5d: a C Code for solving (Large Scale) nonlinear (Minimax) optimization problems, generating iterates satisfying all inequality constraints.
  • Kok HP, De Greef M, Bel A, Crezee J. (2009). Acceleration of high resolution temperature based optimization for hyperthermia treatment planning using element grouping. Med Phys 36:3795–805.
  • Raaymakers BW, Crezee J, Lagendijk JJ. (2000). Modelling individual temperature profiles from an isolated perfused bovine tongue. Phys Med Biol 45:765–80.
  • Van Haaren PMA, Kok HP, Van den Berg CAT, et al. (2007). On verification of hyperthermia treatment planning for cervical carcinoma patients. Int J Hyperthermia 23:303–14.
  • Van Haaren P, Kok P, Van Stam G, et al. (2004). SAR measurements and FDTD calculations in inhomogeneous phantom models. 9th International Congress on Hyperthermic Oncology, St.Louis, USA, 2004. Abstracts, p. 167.
  • Van Haaren PMA, Kok HP, Wiersma J, et al. (2003). Faster EM-field calculations for locoregional hyperthermia treatment planning using the FDTD method. 21st Annual Meeting of the European Society for Hyperthermic Oncology, Abstract book. Munich, Germany. p. 137.
  • Kotte AN, van Leeuwen GM, Lagendijk JJ. (1999). Modelling the thermal impact of a discrete vessel tree. Phys Med Biol 44:57–74.
  • Kok HP, Ciampa S, De Kroon-Oldenhof R, et al. (2014). Toward on-line adaptive hyperthermia treatment planning: correlation between measured and simulated specific absorption rate changes caused by phase steering in patients. Int J Radiat Oncol Biol Phys 90:438–45.
  • Yuan Y, Cheng KS, Craciunescu OI, et al. (2012). Utility of treatment planning for thermochemotherapy treatment of nonmuscle invasive bladder carcinoma. Med Phys 39:1170–181.
  • Crezee J, Kaatee RS, van der Koijk JF, Lagendijk JJ. (1999). Spatial steering with quadruple electrodes in 27 MHz capacitively coupled interstitial hyperthermia. Int J Hyperthermia 15:145–56.
  • van der Koijk JF, Lagendijk JJW, Crezee J, et al. (1997). The influence of vasculature on temperature distributions in MECS interstitial hyperthermia: importance of longitudinal control. Int J Hyperthermia 13:365–85.
  • Van Vulpen M, Raaymakers BW, De Leeuw AAC, et al. (2002). Prostate perfusion in patients with locally advanced prostate carcinoma treated with different hyperthermia techniques. J Urol 168:1597–602.
  • Sherar M, Liu FF, Pintilie M, et al. (1997). Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiat Oncol Biol Phys 39:371–80.
  • Popel AS. (1987). Network models of peripheral circulation. In: Handbook of bioengineering. New York: McGraw-Hill.
  • Johannsen M, Thiesen B, Wust P, Jordan A. (2010). Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 26:790–5.
  • Pearce JA, Petyk AA, Hoopes PJ. (2014). FEM numerical model analysis of magnetic nanoparticle tumor heating experiments. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. vol. 2014. 5312–15.
  • Dennis CL, Ivkov R. 2013. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia 29:715–29.
  • Kok HP, Crezee J. 2017. A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Int J Hyperthermia, in press. doi: 10.1080/02656736.2016.1268726
  • Neal RE, Garcia PA, Robertson JL, Davalos RV. (2012). Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. Ieee Trans Biomed Eng 59:1076–85.
  • van den Bos W, Scheffer HJ, Vogel JA, et al. (2016). Thermal energy during irreversible electroporation and the influence of different ablation parameters. J Vasc Interv Radiol 27:433–43.
  • Scheffer HJ, Nielsen K, de Jong MC, et al. (2014). Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J Vasc Interv Radiol 25:997–1011; quiz 1011.
  • Kok HP, Van Haaren PMA, van de Kamer JB, et al. (2005). High-resolution temperature-based optimization for hyperthermia treatment planning. Phys Med Biol 50:3127–41.
  • Yu WH, Mittra R. (2000). A conformal FDTD algorithm for modeling perfectly conducting objects with curve-shaped surfaces and edges. Microw Opt Technol Lett 27:136–8.
  • Nadobny J, Sullivan D, Wust P, et al. (1998). A high-resolution interpolation at arbitrary interfaces for the FDTD method. IEEE Trans Microw Theory Tech 46:1759–66.
  • Nadobny J, Pontalti R, Sullivan D, et al. (2003). A thin-rod approximation for the improved modeling of bare and insulated cylindrical antennas using the FDTD method. IEEE Trans Antenn Propag 51:1780–96.
  • Lazzi G, Yu QS, Gandhi OP. (1999). Extension and validation of equivalent source helical antenna modeling with the FDTD code. Microw Opt Technol Lett 23:172–4.
  • Rowley JT, Waterhouse RB, Joyner KH. (2002). Modeling of normal-mode helical antennas at 900 MHz and 1.8 GHz for mobile communications handsets using the FDTD technique. IEEE Trans Antenn Propag 50:812–20.
  • Lagendijk JJ, Schellekens M, Schipper J, van der Linden PM. (1984). A three-dimensional description of heating patterns in vascularised tissues during hyperthermic treatment. Phys Med Biol 29:495–507.
  • Mooibroek J, Lagendijk JJ. (1991). A fast and simple algorithm for the calculation of convective heat transfer by large vessels in three-dimensional inhomogeneous tissues. IEEE Trans Biomed Eng 38:490–501.
  • Brinck H, Werner J. (1995). Use of vascular and non-vascular models for the assessment of temperature distribution during induced hyperthermia. Int J Hyperthermia 11:615–26.
  • Huang HW, Chen ZP, Roemer RB. (1996). A counter current vascular network model of heat transfer in tissues. J Biomech Eng 118:120–9.
  • Gabriel C, Gabriel S, Corthout E. (1996). The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–49.
  • Schooneveldt G, Kok HP, Balidemaj E, et al. (2016). Improving hyperthermia treatment planning for the pelvis by accurate fluid modelling. Med Phys 43:5442–52.
  • Schooneveldt G, Bakker A, Balidemaj E, et al. (2016). Thermal dosimetry for bladder hyperthermia treatment. An overview. Int J Hyperthermia 32:417–33.
  • Cheng KS, Dewhirst MW, Stauffer PR, Das S. (2010). Effective learning strategies for real-time image-guided adaptive control of multiple-source hyperthermia applicators. Med Phys 37:1285–97.
  • Mougenot C, Quesson B, de Senneville BD, et al. (2009). Three-dimensional spatial and temporal temperature control with MR thermometry-guided focused ultrasound (MRgHIFU). Mag Reson Med 61:603–14.
  • Ranneberg M, Weiser M, Weihrauch M, et al. (2010). Regularized antenna profile adaptation in online hyperthermia treatment. Med Phys 37:5382–94.
  • Cheng KS, Stakhursky V, Stauffer P, et al. (2007). Online feedback focusing algorithm for hyperthermia cancer treatment. Int J Hyperthermia 23:539–54.
  • Rijnen Z, Bakker JF, Canters RA, et al. (2013). Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int J Hyperthermia 29:181–93.
  • Kok HP, Bakker A, Korshuize L, et al. (2016). On-line hyperthermia treatment planning during locoregional heating to improve tumor temperatures and reduce hot spots. International Congres of Hyperthermic Oncology; abstract book.
  • Kok HP, De Greef M, Borsboom PP, et al. (2011). Improved power steering with double and triple ring waveguide systems: the impact of the operating frequency. Int J Hyperthermia 27:224–39.
  • Kok HP, De Greef M, Wiersma J, et al. (2010). The impact of the waveguide aperture size of the 3D 70 MHz AMC-8 locoregional hyperthermia system on tumour coverage. Phys Med Biol 55:4899–916.
  • Kroeze H, van de Kamer JB, De Leeuw AAC, Lagendijk JJW. (2001). Regional hyperthermia applicator design using FDTD modelling. Phys.Med.Biol 46:1919–35.
  • Paulsen KD, Geimer S, Tang J, Boyse WE. (1999). Optimization of pelvic heating rate distributions with electromagnetic phased arrays. Int J Hyperthermia 15:157–86.
  • de Bruijne M, Wielheesen DH, Van der Zee J, et al. (2007). Benefits of superficial hyperthermia treatment planning: five case studies. Int J Hyperthermia 23:417–429.
  • Kok HP, De Greef M, Van Wieringen N, et al. (2010). Comparison of two different 70 MHz applicators for large extremity lesions: simulation and application. Int J Hyperthermia 26:376–88.
  • Paulides MM, Vossen SH, Zwamborn AP, van Rhoon GC. (2005). Theoretical investigation into the feasibility to deposit RF energy centrally in the head-and-neck region. Int J Radiat Oncol Biol Phys 63:634–42.
  • Kok HP, De Greef M, Correia D, et al. (2009). FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.. Int J Hyperthermia 25:462–76.
  • Crezee J, van Leeuwen CM, Oei AL, et al. (2016). Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiat Oncol 11:14.
  • Kok HP, Crezee J, Franken NAP, et al. (2014). Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions. Int J Radiat Oncol Biol Phys 88:739–45.
  • Crezee H, van Leeuwen CM, Oei AL, et al. (2016). Thermoradiotherapy planning: integration in routine clinical practice. Int J Hyperthermia 32:41–9.
  • Eppink B, Krawczyk PM, Stap J, Kanaar R. (2012). Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies. Int J Hyperthermia 28:509–17.
  • Franken NA, Barendsen GW. (2014). Enhancement of radiation effectiveness by hyperthermia and incorporation of halogenated pyrimidines at low radiation doses as compared with high doses: implications for mechanisms. Int J Radiat Biol 90:313–17.
  • van Leeuwen GM, Lagendijk JJ, Van Leersum BJ, et al. (1999). Calculation of change in brain temperatures due to exposure to a mobile phone. Phys Med Biol 44:2367–79.
  • Flyckt VM, Raaymakers BW, Kroeze H, Lagendijk JJ. (2007). Calculation of SAR and temperature rise in a high-resolution vascularized model of the human eye and orbit when exposed to a dipole antenna at 900, 1500 and 1800 MHz. Phys Med Biol 52:2691–701.
  • Sebek J, Albin N, Bortel R, et al. (2016). Sensitivity of microwave ablation models to tissue biophysical properties: a first step toward probabilistic modeling and treatment planning. Med Phys 43:2649.
  • Lopresto V, Pinto R, Farina L, Cavagnaro M. (2016). Treatment planning in Microwave Thermal Ablation: clinical gaps and recent research advances. Int J Hyperthermia, in press. doi: 10.1080/02656736.2016.1214883
  • Adibzadeh F, Bakker JF, Paulides MM, et al. (2015). Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation. Bioelectromagnetics 36:66–76.
  • Bakker JF, Paulides MM, Christ A, et al. (2010). Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz. Phys Med Biol 55:3115–30.
  • Restivo MC, van den Berg CAT, van Lier ALHMW, et al. (2016). Local specific absorption rate in brain tumors at 7 tesla. Magn Reson Med 75:381–9.
  • de Greef M, Ipek O, Raaijmakers AJ, et al. (2013). Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head,”. Magn Reson Med 69:1476–85.