1,083
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A flexible 70 MHz phase-controlled double waveguide system for hyperthermia treatment of superficial tumours with deep infiltration

, , , , , , , , , , & show all
Pages 796-809 | Received 23 Aug 2016, Accepted 27 Mar 2017, Published online: 18 Apr 2017

References

  • Franckena M, Stalpers LJA, Koper PCM, et al. (2008). Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionally advanced cervix cancer: an update of the Dutch Deep Hyperthermia Trial. Int J Radiat Oncol Biol Phys 70:1176–82.
  • Issels RD, Lindner LH, Verweij J, et al. (2010). Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11:561–70.
  • Overgaard J, Bentzen SM, Gonzalez Gonzalez D, et al. (1995). Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. The Lancet 345:540–3.
  • Van der Zee J, González González D, Van Rhoon GC, et al. (2000). Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355:1119–25.
  • Vernon CC, Hand JW, Stanley BF, et al. (1996). Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys 35:731–44.
  • Harima Y, Ohguri T, Imada H, et al. (2016). A multicentre randomised clinical trial of chemoradiotherapy plus hyperthermia vs. chemoradiotherapy alone in patients with locally advanced cervical cancer. Int J Hyperthermia 32:801–8.
  • Datta NR, Puric E, Klingbiel D, et al. (2016). Hyperthermia and radiation therapy in locoregional recurrent breast cancers: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys 94:1073–87.
  • Cihoric N, Tsikkinis A, van Rhoon G, et al. (2015). Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperthermia 31:609–14.
  • Datta NR, Gomez Ordonez S, Gaipl US, et al. (2015). Local hyperthermia combined with radiotherapy and/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev 41:742–53.
  • Kouloulias V, Karanasiou I, Giamalaki M, et al. (2015). Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment. Int J Hyperthermia 31:23–32.
  • Myerson RJ, Perez CA, Emami B, et al. (1990). Tumor control in long-term survivors following superficial hyperthermia. Int J Radiat Oncol Biol Phys 18:1123–9.
  • van der Zee J, Holt van der B, Rietveld PJM, et al. (1999). Reirradiation combined with hyperthermia in recurrent breast cancer results in a worthwhile local palliation. Br J Cancer 79:483–90.
  • Oldenburg S, Griesdoorn V, van Os R, et al. (2015). Reirradiation and Hyperthermia for irresectable locoregional recurrent breast cancer in previously irradiated area: size matters. Radiother Oncol 117:223–8.
  • Curto S, Prakash P. (2015). Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system. Int J Hyperthermia 31:726–36.
  • Gelvich EA, Mazokhin VN. (2002). Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves. IEEE Trans Biomed Eng 49:1015–23.
  • van Wieringen N, Wiersma J, zum Vörde Sive Vörding P, et al. (2009). Characteristics and performance evaluation of the capacitive Contact Flexible Microstrip Applicator operating at 70 MHz for external hyperthermia. Int J Hyperthermia 25:542–53.
  • Kosterev VV, Kramer-Ageev EA, Mazokhin VN, et al. (2015). Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. Int J Hyperthermia 31:443–52.
  • Schneider CJ, Kuijer JPA, Colussi LC, et al. (1995). Performance evaluation of annular arrays in practice: the measurement of phase and amplitude patterns of radio-frequency deep body applicators. Med Phys 22:755–65.
  • Wiersma J, van Dijk JDP, Sijbrands j, Schneider CJ. (1998). The measurement of fringing fields in a radio-frequency hyperthermia array with emphasis on bolus size. Int J Hyperthermia 14:535–51.
  • van Dijk JDP, Schneider C, van Os R, et al. (1990). Results of deep body hyperthermia with large waveguide radiators. Adv Exp Med Biol 267:315–19.
  • Crezee J, van Haaren PMA, Westendorp H, et al. (2009). Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study. Int J Hyperthermia 25:581–92.
  • Van der Gaag ML, De Bruijne M, Samaras T, et al. (2006). Development of a guideline for the water bolus temperature in superficial hyperthermia. Int J Hyperthermia 22:637–56.
  • Lagendijk JJW, Molls M. (1991). Conclusions deep body QA. Comac-BME Bulletin 5:95–6.
  • Schneider CJ, Olmi R, van Dijk JDP. (1995). Phantom design: applicability and physical properties. In: Seegenschmiedt MH, Fessenden P, Vernon CC, eds. Thermoradiotherapy and thermochemotherapy. Vol. 1. Biology, physiology and physics. Berlin: Springer, 381–97.
  • Trefná H, Crezee J, Schmidt M, et al. (2017). Quality assurance guidelines for superficial hyperthermia clinical trials: I. clinical requirements. Int J Hyperthermia. [Epub ahead of print]. doi: 10.1007/s00066-017-1106-0.
  • Kok HP, Bakker A, van Stam G, Crezee J. A 70 MHz double waveguide setup for hyperthermia of deep superficial tumours. Proceedings European Microwave Week 2016, 2016 October 3–7; London.
  • Lagendijk JJ, Van Rhoon GC, Hornsleth SN, et al. (1998). ESHO quality assurance guidelines for regional hyperthermia. Int J Hyperthermia 14:125–33.
  • Dewhirst MW, Phillips MD, Samulski TV, et al. (1990). RTOG quality assurance guidelines for clinical trials using hyperthermia. Int J Radiation Oncology Biol Phys 18:1249–59.
  • de Leeuw AA, Crezee J, Lagendijk JJ. (1993). Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. Int J Hyperthermia 9:685–97.
  • Bruggmoser G, Bauchowitz S, Canters R, et al. (2011). Quality assurance for clinical studies in regional deep hyperthermia. Strahlenther Onkol 187:605–10.
  • Leybovich LB, Emami B, Myerson RJ, et al. (1991). Dual-antenna applicator for hyperthermia of tumours at intermediate depth. Int J Hyperthermia 7:455–64.
  • Turner PF, Tumeh A, Schaefermeyer T. (1989). BSD-2000 approach for deep local and regional hyperthermia: physics and technology. Strahlenther Onkol 165:738–41.
  • Wust P, Beck R, Berger J, et al. (2000). Electric field distributions in a phased-array applicator with 12 channels. Med Phys 27:2565–79.
  • Kroeze H, van de Kamer JB, de Leeuw AA, et al. (2003). Treatment planning for capacitive regional hyperthermia. Int J Hyperthermia 19:58–73.
  • Shoji H, Motegi M, Osawa K, et al. (2016). Output-limiting symptoms induced by radiofrequency hyperthermia. Are they predictable? Int J Hyperthermia 32:199–203.
  • Kok HP, Crezee J. (2017). A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Int J Hyperthermia. [Epub ahead of print]. doi: 10.1080/02656736.2016.1268726.
  • Kok HP, Ciampa S, de Kroon-Oldenhof R, et al. (2014). Towards on-line adaptive hyperthermia treatment planning: correlation between measured and simulated SAR changes caused by phase steering in patients. Int J Radiat Oncol Biol Phys 90:438–45.
  • Kok HP, de Greef M, van Wieringen N, et al. (2010). Comparison of two different 70 MHz applicators for large extremity lesions: simulation and application. Int J Hyperthermia 26:376–88.