992
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Thermal diffusivity and perfusion constants from in vivo MR-guided focussed ultrasound treatments: a feasibility study

ORCID Icon, , &
Pages 352-362 | Received 27 Feb 2017, Accepted 06 Jun 2017, Published online: 26 Jun 2017

References

  • Schwenke M, Strehlow J, Haase S, et al. (2015). An integrated model-based software for FUS in moving abdominal organs. Int J Hyperthermia 31:240–50.
  • Odéen H, Todd N, Dillon C, et al. (2016). Model predictive filtering MR thermometry: effects of model inaccuracies, k-space reduction factor, and temperature increase rate. Magn Reson Med 75:207–16.
  • de Bever J, Todd N, Payne A, et al. (2014). Adaptive model-predictive controller for magnetic resonance guided focused ultrasound therapy. Int J Hyperthermia 30:456–70.
  • Gizzo S, Saccardi C, Patrelli TS, et al. (2014). Magnetic resonance-guided focused ultrasound myomectomy: safety, efficacy, subsequent fertility and quality-of-life improvements, a systematic review. Reprod Sci 21:465–76.
  • Lénárd ZM, McDannold NJ, Fennessy FM, et al. (2008). Uterine leiomyomas: MR imaging-guided focused ultrasound surgery-imaging predictors of success. Radiology 249:187–94.
  • Funaki K, Sawada K, Maeda F, Nagai S. (2007). Subjective effect of magnetic resonance-guided focused ultrasound surgery for uterine fibroids. J Obstet Gynaecol Res 33:834–9.
  • Funaki K, Fukunishi H, Funaki T, et al. (2007). Magnetic resonance-guided focused ultrasound surgery for uterine fibroids: relationship between the therapeutic effects and signal intensity of preexisting T2-weighted magnetic resonance images. Am J Obstet Gynecol 196:184.e1–6.
  • Gorny KR, Woodrum DA, Brown DL, et al. (2011). Magnetic resonance-guided focused ultrasound of uterine leiomyomas: review of a 12-month outcome of 130 clinical patients. J Vasc Interv Radiol JVIR 22:857–64.
  • Kim Y, Keserci B, Partanen A, et al. (2012). Volumetric MR-HIFU ablation of uterine fibroids: role of treatment cell size in the improvement of energy efficiency. Eur J Radiol 81:3652–9.
  • LeBlang SD, Hoctor K, Steinberg FL. (2010). Leiomyoma shrinkage after MRI-guided focused ultrasound treatment: report of 80 patients. AJR Am J Roentgenol 194:274–80.
  • Machtinger R, Inbar Y, Cohen-Eylon S, et al. (2012). MR-guided focus ultrasound (MRgFUS) for symptomatic uterine fibroids: predictors of treatment success. Hum Reprod Oxf Engl 27:3425–31.
  • Funaki K, Fukunishi H, Sawada K. (2009). Clinical outcomes of magnetic resonance-guided focused ultrasound surgery for uterine myomas: 24-month follow-up. Ultrasound Obstet Gynecol off J Int Soc Ultrasound Obstet Gynecol 34:584–9.
  • McDannold N, Tempany CM, Fennessy FM, et al. (2006). Uterine leiomyomas: MR imaging-based thermometry and thermal dosimetry during focused ultrasound thermal ablation. Radiology 240:263–72.
  • Pilatou MC, Stewart EA, Maier SE, et al. (2009). MRI-based thermal dosimetry and diffusion-weighted imaging of MRI-guided focused ultrasound thermal ablation of uterine fibroids. J Magn Reson Imaging 29:404–11.
  • Yoon S-W, Lee C, Kim KA, Kim SH. (2010). Contrast-enhanced dynamic MR imaging of uterine fibroids as a potential predictor of patient eligibility for MR guided focused ultrasound (MRgFUS) treatment for symptomatic uterine fibroids. Obstet Gynecol Int 2010:834275.
  • Zhang J, Fischer J, Warner L, et al. (2015). Noninvasive, in vivo determination of uterine fibroid thermal conductivity in MRI-guided high intensity focused ultrasound therapy. J Magn Reson Imaging 41:1654–61.
  • Avedian RS, Bitton R, Gold G, et al. (2016). Is MR-guided high-intensity focused ultrasound a feasible treatment modality for desmoid tumors? Clin Orthop Relat Res 474:697–704.
  • Ghanouni P, Dobrotwir A, Bazzocchi A, et al. (2017). Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study. Eur Radiol 27:732–40.
  • Bucknor MD, Rieke V. (2017). MRgFUS for desmoid tumors within the thigh: early clinical experiences. J Ther Ultrasound 5:4
  • Mcintosh RL, Anderson V. (2010). A comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys Rev Lett 05:129–51.
  • Duck FA. (2012) Physical properties of tissue: a comprehensive reference book. York (UK): Institute of Physics and Engineering in Medicine.
  • Hasgall PA, Di Gennaro F, Baumgartner C, et al. 2015. IT’IS Database for thermal and electromagnetic parameters of biological tissues [Internet]. Available from: www.itis.ethz.ch/database
  • Cheng H-LM, Plewes DB. (2002). Tissue thermal conductivity by magnetic resonance thermometry and focused ultrasound heating. J Magn Reson Imaging 16:598–609.
  • Huttunen JMJ, Huttunen T, Malinen M, Kaipio JP. (2006). Determination of heterogeneous thermal parameters using ultrasound induced heating and MR thermal mapping. Phys Med Biol 51:1011–32.
  • Alon L, Collins C, Carluccio G, et al. (2013). Tissue thermal property tomography. In: Proc 21st Ann Mtg ISMRM. 2519.
  • Appanaboyina S, Partanen A, Haemmerich D. (2013). Non-invasive estimation of thermal tissue properties by high-intensity focused ultrasound. In: Proc SPIE. 85840W.
  • Dillon CR, Payne A, Christensen DA, Roemer RB. (2014). The accuracy and precision of two non-invasive, magnetic resonance-guided focused ultrasound-based thermal diffusivity estimation methods. Int J Hyperthermia 30:362–71.
  • Dillon CR, Borasi G, Payne A. (2016). Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data. Phys Med Biol 61:923–36.
  • Dragonu I, de Oliveira PL, Laurent C, et al. (2009). Non-invasive determination of tissue thermal parameters from high intensity focused ultrasound treatment monitored by volumetric MRI thermometry. NMR Biomed 22:843–51.
  • Dillon C, Roemer R, Payne A. (2015). Magnetic resonance temperature imaging-based quantification of blood flow-related energy losses. NMR Biomed 28:841–51.
  • Shi YC, Parker DL, Dillon CR. (2016). Sensitivity of tissue properties derived from MRgFUS temperature data to input errors and data inclusion criteria: ex vivo study in porcine muscle. Phys Med Biol 61:N373–85.
  • De Poorter J, De Wagter C, De Deene Y, et al. (1995). Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle. Magn Reson Med 33:74–81.
  • Ishihara Y, Calderon A, Watanabe H, et al. (1995). A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–23.
  • Rieke V, Vigen KK, Sommer G, et al. (2004). Referenceless PRF shift thermometry. Magn Reson Med 51:1223–31.
  • Carslaw HS, Jaeger JC. (1986). Conduction of heat in solids. 2nd ed. Oxford [Oxfordshire]: New York: Clarendon Press; Oxford University Press; 510.
  • Farrer AI, Odéen H, de Bever J, et al. (2015). Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS. J Ther Ultrasound 3:9.
  • Cline HE, Hynynen K, Hardy CJ, et al. (1994). MR temperature mapping of focused ultrasound surgery. Magn Reson Med 31:628–36.
  • Dillon CR, Vyas U, Payne A, et al. (2012). An analytical solution for improved HIFU SAR estimation. Phys Med Biol 57:4527–44.
  • Sekins KM, Emery AF, Lehmann JF, MacDougall JA. (1982). Determination of perfusion field during local hyperthermia with the aid of finite element thermal models. J Biomech Eng 104:272–9.
  • Sekins KM, Lehmann JF, Esselman P, et al. (1984). Local muscle blood flow and temperature responses to 915MHz diathermy as simultaneously measured and numerically predicted. Arch Phys Med Rehabil 65:1–7.
  • Lang J, Erdmann B, Seebass M. (1999). Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans Biomed Eng 46:1129–38.
  • Laakso I, Hirata A. (2011). Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure. Phys Med Biol 56:7449–71.
  • Zar JH. (1999) Biostatistical analysis. 4th ed. Upper Saddle River (N.J): Prentice Hall. 929.
  • Choi J, Morrissey M, Bischof JC. (2013). Thermal processing of biological tissue at high temperatures: impact of protein denaturation and water loss on the thermal properties of human and porcine liver in the range 25–80 °C. J Heat Transf 135:061302.
  • Guntur SR, Lee KI, Paeng DG, et al. (2013). Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation. Ultrasound Med Biol 39:1771–84.
  • Kim YS, Lee JW, Choi CH, et al. (2016). Uterine fibroids: correlation of T2 signal intensity with semiquantitative perfusion MR parameters in patients screened for MR-guided high-intensity focused ultrasound ablation. Radiology 278:925–35.
  • Bitton RR, Webb TD, Pauly KB, Ghanouni P. (2016). Improving thermal dose accuracy in magnetic resonance-guided focused ultrasound surgery: long-term thermometry using a prior baseline as a reference: improving thermal dose accuracy in MRgFUS. J Magn Reson Imaging 43:181–9.
  • Gaur P, Partanen A, Werner B, et al. (2016). Correcting heat-induced chemical shift distortions in proton resonance frequency-shift thermometry: CS-compensated PRF temperature reconstruction. Magn Reson Med 76:172–82.
  • Pernot M, Tanter M, Fink M. (2004). 3-D real-time motion correction in high-intensity focused ultrasound therapy. Ultrasound Med Biol 30:1239–49.
  • Tanter M, Pernot M, Aubry JF, et al. (2007). Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound. Int J Hyperthermia 23:141–51.
  • de Senneville BD, Mougenot C, Moonen CTW. (2007). Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound. Magn Reson Med 57:319–30.
  • Ries M, de Senneville BD, Roujol S, et al. (2010). Real-time 3D target tracking in MRI guided focused ultrasound ablations in moving tissues. Magn Reson Med 64:1704–12.
  • Quesson B, Laurent C, Maclair G, et al. (2011). Real-time volumetric MRI thermometry of focused ultrasound ablation in vivo: a feasibility study in pig liver and kidney. NMR Biomed 24:145–53.
  • Vigen KK, Daniel BL, Pauly JM, Butts K. (2003). Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion. Magn Reson Med 50:1003–10.
  • Shmatukha AV, Bakker CJG. (2006). Correction of proton resonance frequency shift temperature maps for magnetic field disturbances caused by breathing. Phys Med Biol 51:4689–705.
  • Schmitt A, Mougenot C, Chopra R. (2014). Spatiotemporal filtering of MR-temperature artifacts arising from bowel motion during transurethral MR-HIFU. Med Phys 41:113302.
  • Svedin BT, Payne A, Parker DL. (2016). Respiration artifact correction in three-dimensional proton resonance frequency MR thermometry using phase navigators. Magn Reson Med 76:206–13.
  • Petersen ET, Zimine I, Ho YCL, Golay X. (2006). Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701.
  • Valvano JW, Cochran JR, Diller KR. (1985). Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int J Thermophys 6:301–11.
  • Damianou CA, Sanghvi NT, Fry FJ, Maass-Moreno R. (1997). Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose. J Acoust Soc Am 102:628–34.
  • Clarke R, Bush N, Ter Haar G. (2003). The changes in acoustic attenuation due to in vitro heating. Ultrasound Med Biol 29:127–35.
  • Bhattacharya A, Mahajan RL. (2003). Temperature dependence of thermal conductivity of biological tissues. Physiol Meas 24:769–83.
  • Schutt DJ, Haemmerich D. (2008). Effects of variation in perfusion rates and of perfusion models in computational models of radio frequency tumor ablation. Med Phys 35:3462.
  • Prakash P, Diederich CJ. (2012). Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control. Int J Hyperthermia 28:69–86.
  • Huang CW, Sun MK, Chen BT, et al. (2015). Simulation of thermal ablation by high-intensity focused ultrasound with temperature-dependent properties. Ultrason Sonochem 27:456–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.