1,782
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A comprehensive model for heat-induced radio-sensitisation

ORCID Icon, , , , &
Pages 392-402 | Received 15 Feb 2017, Accepted 06 Jun 2017, Published online: 05 Jul 2017

References

  • Horsman M, Overgaard J. (2007). Hyperthermia: a potent enhancer of radiotherapy. J Clin Oncol 19:418–26.
  • Raaphorst G, Yang D, Ng C. (2000). Comparison of survival and DNA double strand breaks for mild hyperthermia and low dose rate/pulsed low dose rate irradiation in human cells. J Therm Biol 25:305–11.
  • Rao W, Deng ZS, Liu J. (2010). A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit Rev Biomed Eng 38:101–16.
  • Rozin-Towle L, Pirro J. (1991). The response of human and rodent cells to hyperthermia. Int J Radiat Oncol Biol Phys 20:751–6.
  • Kampinga HH. (2006). Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperthermia 22:191–6.
  • ter Haar G, Coussios C. (2007). High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia 23:89–104.
  • ter Haar G, Coussios C. (2007). High intensity focused ultrasound: past, present and future. Int J Hyperthermia 23:85–7.
  • Mallory M, Gogineni E, Jones GC, et al. (2016). Therapeutic hyperthermia: the old, the new, and the upcoming. Crit Rev Oncol Hematol 97:56–64.
  • Lauber K, Brix N, Ernst A, et al. (2015). Targeting the heat shock response in combination with radiotherapy: sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 368:209–29.
  • Lauber K, Ernst A, Orth M, et al. (2012). Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front Oncol 2:1–14.
  • Oei AL, Vriend LEM, Crezee J, et al. (2015). Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol 10:165.
  • Sugahara T, Van Der Zee J, Kampinga HH, et al. (2008). Kadota Fund International Forum 2004. Application of thermal stress for the improvement of health, 15–18 June 2004, Awaji Yumebutai International Conference Center, Awaji Island, Hyogo, Japan. Final Report. Int J Hyperthermia 24:123–40.
  • Mantso T, Goussetis G, Franco R, et al. (2016). Effects of hyperther- mia as a mitigation strategy in DNA damage-based cancer therapies. Sem Cancer Biol 37:96–105.
  • Andisheh B, Edgren M, Belki´c. D, et al. (2013). A comparative analysis of radiobiological models for cell surviving fractions at high doses. Technol Cancer Res Treat 12:183–92.
  • Besserer J, Schneider U. (2015). A track-event theory of cell survival. Z Med Phys 25:168–75.
  • Wright NT. (2013). Comparison of models of post-hyperthermia cell survival. J Biomech Eng 135:51001.
  • Feng Y, Oden JT, Rylander MN. (2008). A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments. J Biomech Eng 130:041016.
  • Mackey M, Roti Roti JL. (1991). A model of heat-induced clonogenic cell death. J Theor Biol 156:133–46.
  • Fowler JF. (1989). The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–94.
  • Sapareto SA, Dewey WC. (1984). Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800.
  • Lind BK, Persson LM, Edgren MR, Hedlo I. (2003). Repairable – conditionally repairable damage model based on dual poisson processes. Radiat Res 160:366–75.
  • Guerrero M, Carlone M. (2010). Mechanistic formulation of a linear-quadratic-linear (LQL) model: split-dose experiments and exponentially decaying sources. Med Phys 37:4173–81.
  • Brahme A. (2011). Accurate description of the cell survival and biological effect at low and high doses and LET’s. J Radiat Res 52:389–407.
  • Garcia LM, Leblanc J, Wilkins D, Raaphorst GP. (2006). Fitting the linear-quadratic model to detailed data sets for different dose ranges. Phys Med Biol 51:2813–23.
  • Garcia LM, Wilkins DE, Raaphorst GP. (2007). Alpha/beta ratio: a dose range dependence study. Int J Radiat Oncol Biol Phys 67:587–93.
  • Park C, Papiez L, Zhang S, et al. (2008). Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–52.
  • Kok HP, Crezee J, Franken NAP, et al. (2014). Quantifying the com- bined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions. Int J Radiat Oncol Biol Phys 88:739–45.
  • Crezee J, van Leeuwen CM, Oei AL, et al. (2016). Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiat Oncol 11:14.
  • Dewey WC. (2009). Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperther Mia 25:3–20.
  • Henle KJ, Dethlefsen LA. (1980). Time-temperature relationships for heat-induced killing of mammalian cells. Ann N Y Acad Sci 335:234–53.
  • Sapareto SA, Hopwood LE, Dewey WC, et al. (1978). Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res 38:393–400.
  • Qin Z, Balasubramanian SK, Wolkers WF, et al. (2014). Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells. Ann Biomed Eng 42:2392–404.
  • He X, Bhowmick S, Bischof JC. (2009). Thermal therapy in urologic systems: a comparison of arrhenius and thermal isoeffective dose models in predicting hyperthermic injury. J Biomech Eng 131:074507.
  • Mouratidis PXE, Rivens I, ter Haar G. (2015). A study of thermal dose-induced autophagy, apoptosis and necroptosis in colon cancer cells. Int J Hyperthermia 31:476–88.
  • Highfield DP, Holahan EV, Holahan PK, Dewey WC. (1984). Hyperthermic survival of Chinese hamster ovary cells as a function of cellular population density at the time of plating. Radiat Res 97:139–53.
  • Borrelli M, Thompson LL, Cain CA, Dewey WC. (1990). Time-temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43C to 57C. Int J Radiat Oncol Biol Phys 19:389–99.
  • Dikomey E, Jung H. (1991). Thermal radiosensitization in CHO cells by prior heating at 41–46 degrees C. Int J Radiat Biol 59:815–25.
  • Brenner DJ. (2008). The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 18:234–9.
  • Kirkpatrick JP, Meyer JJ, Marks LB. (2008). The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol 18:240–3.
  • Xu M, Wright WD, Higashikubo R, Wang L. (1999). Thermal radiosensitization of human tumour cell lines with different sensitivities to 41.1 °C. Int J Hyperthermia 15:279–90.
  • Xu M, Myerson RJ, Straube WL, et al. (2002). Radiosensitization of heat resistant human tumour cells by 1 hour at 41.1 degrees C and its effect on DNA repair. Int J Hyperthermia 18:385–403.
  • Myerson RJ, Roti JLR, Moros EG, et al. (2004). Modelling heat-induced radiosensi- tization: clinical implications. Int J Hyperthermia 20:201–12.
  • Franken NAP, Oei AL, Kok HP, et al. (2013). Cell survival and radiosensitisation: modulation of the linear and quadratic parameters of the LQ model (Review). Int J Oncol 42:1501–15.
  • van Leeuwen CM, Crezee J, Oei AL, Franken NAP, et al. (2017). 3D radiobiolog- ical evaluation of combined radiotherapy and hyperthermia treatments. Int J Hyperthermia 33:160–9.
  • Pajonk F, Ophoven AV, Mcbride WH. (2005). Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res 65:4836–44.
  • Bhuyan BK. (1979). Kinetics of cell kill by hyperthermia. Cancer Res 39:2277–84.
  • Zhang H, Mehta K, Cohen P, Guha C. (2008). Hyperthermia on immune regulation: a temperature’s story. Cancer Lett 271:191–204.
  • Song CW. (1984). Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res 44:4721s–30s.
  • van den Tempel N, Horsman MR, Kanaar R. (2016). Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int J Hyperthermia 32:446–54.
  • Hildebrandt B, Wust P, Ahlers O, et al. (2002). The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56.