1,150
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

In vitro exposure of bull sperm cells to DMSA-coated maghemite nanoparticles does not affect cell functionality or structure

, , , &
Pages 415-422 | Received 07 Apr 2017, Accepted 08 Jun 2017, Published online: 28 Jun 2017

References

  • Sekhon BS. (2014). Nanotechnology in agri-food production: an overview. Nanotechnol Sci 7:31–53.
  • Seal S, Karn B. (2014). Safety aspects of nanotechnology based activity. Safety Sci 63:217–25.
  • Thiesen B, Jordan A. (2008). Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24:467–74.
  • Kaur P, Aliru ML, Chadha AS, et al. (2016). Hyperthermia using nanoparticles-promises and pitfalls. Int J Hyperthermia 32:76–88.
  • Foote RH. (1999). Fertility of rabbit sperm exposed in vitro to cadmium and lead. Reprod Toxicol 13:443–9.
  • Kozissnik B, Bohorquez AC, Dobson J, et al. (2013). Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperthermia 29:706–14.
  • Wang J, Chen Y, Chen BA, et al. (2010). Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomedicine 5:861–6.
  • Hussain SM, Braydich-Stolle LK, Schrand AM, et al. (2009). Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21:1549–59.
  • Lan Z, Yang WX. (2012). Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood–testis barrier. Nanomedicine 7:579–96.
  • McAuliffe ME, Perry MJ. (2007). Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology 1:204–10.
  • Mathias FT, Romano RM, Kizys MM, et al. (2015). Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology 9:64–70.
  • Lafuente D, Garcia T, Blanco J, et al. (2016). Effects of oral exposure to silver nanoparticles on the sperm of rats. Reprod Toxicol 60:133–9.
  • Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, et al. (2012). Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett 214:251–8.
  • Hussein MM, Ali HA, Saadeldin IM, et al. (2016). Querectin alleviates zinc oxide nanoreprotoxicity in male albino rats. J Biochem Mol Toxicol 30:489–96.
  • Talebi AR, Khorsandi L, Moridian M. (2013). The effect of zinc oxide nanoparticles on mouse spermatogenesis. J Assist Reprod Genet 30:1203–9.
  • Farini VL, Camaño CV, Ybarra G, et al. (2016). Improvement of bovine semen quality by removal of membrane-damaged sperm cells with DNA aptamers and magnetic nanoparticles. J Biotechnol 229:33–41.
  • Odhiambo JF, DeJarnette JM, Geary TW, et al. (2014). Increased conception rates in beef cattle inseminated with nanopurified bull semen. Biol Reprod 91:97.
  • Feugang J, Liao S, Crenshaw M, et al. (2015). Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement. JFIV Reprod Med Genet 3:17–9.
  • Barchanski A, Taylor U, Klein S, et al. (2011). Golden perspective: application of laser-generated gold nanoparticle conjugates in reproductive biology. Reprod Domest Anim 46:42–52.
  • Rath D, Barcikowski S, de Graaf S, et al. (2013). Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction 145:R15–30.
  • Kim TS, Lee SH, Gang GT, et al. (2010). Exogenous DNA uptake of boar spermatozoa by a magnetic nanoparticle vector system. Reprod Domest Anim 45:201–6.
  • Braydich-Stolle L, Hussain S, Schlager JJ, et al. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–19.
  • Wiwantitkit V, Sereemaspum A, Rojanathanes R. (2009). Effect of gold nanoparticles on spermatozoa: the first world report. Fertil Steril 91:e7–8.
  • Moretti E, Terzuoli G, Renieri T, et al. (2012). In vitro effect of gold and silver nanoparticles on human spermatozoa. Andrologia 45:392–6.
  • Zakhidov ST, Marshak TL, Malolina EA, et al. (2010). Gold nanoparticles disturb nuclear chromatin decondensation in mouse sperm in vitro. Biochemistry 4:293–6.
  • Taylor U, Barchanski A, Petersen S, et al. (2014). Gold nanoparticles interfere with sperm functionality by membrane adsorption without penetration. Nanotoxicology 8:118–27.
  • Zakhidov ST, Pavliuchenkova SM, Samoĭlov AV, et al. (2013). Bovine sperm chromatin is not protected from the effects ultrasmall gold nanoparticles. Izv Akad Nauk Ser Biol 16:645–52.
  • Makhluf SBD, Qasem R, Rubinstein S, et al. (2006). Loading magnetic nanoparticles into sperm cells does not affect their functionality. Langmuir 22:9480–2.
  • Mahmoudi M, Simchi A, Milani AS, et al. (2009). Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336:510–8.
  • Valois CRA, Braz JM, Nunes ES, et al. (2010). The effect of DMSA-functionalized magnetic nanoparticles on transendothelial migration of monocytes in the murine lung via β2 integrin-dependent pathway. Biomaterials 21:366–74.
  • Machado GM, Carvalho JO, Siqueira Filho E, et al. (2009). Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos. Theriogenology 71:1289–97.
  • Ema M, Kobayashi N, Naya M, et al. (2010). Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 30:343–52.
  • Vasquez ES, Feugang JM, Willard ST, et al. (2016). Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa. J Nanobiotechnology 17:14–20.
  • Nasri S, Rezai-Zarchi S, Kerishchi P, et al. (2015). The effect of iron oxide nanoparticles on sperm numbers and mobility in male mice. Zahedan J Res Med Sci 17:0–10.
  • Dimitropoulos R. (1967). La signification du test de la thermo résitance dans l' appreciation de la valeur fécondante du sperm econgelé. Ann Méd Vét 4:215–24.
  • Gillan L, Kroetsch T, Chis Maxwell WM, et al. (2008). Assessment of in vitro sperm characteristics in relation to fertility in dairy bulls. Anim Reprod Sci 103:201–14.
  • Mortimer ST. (1997). A critical review of the physiological importance and analysis of sperm movement in mammals. Hum Reprod Update 3:403–139.
  • Suarez SS, Osman RA. (1987). Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract. Biol Reprod 36:1191–8.
  • Henkel R, Müller C, Miska W, et al. (1993). Determination of the acrosome reaction in human spermatozoa is predictive of fertilization in vitro. Hum Reprod 8:2128–32.
  • Pisanic TR, Blackwell JD, Shubayev VI, et al. (2007). Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28:2572–81.
  • Auffan M, Decome L, Rose J, et al. (2006). In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol 40:4367–73.
  • Auffan M, Rose J, Wiesner MR, et al. (2009). Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–33.
  • Gupta AK, Gupta M. (2005). Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:3995–4021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.