949
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Non-Fourier thermal transport induced structural hierarchy and damage to collagen ultrastructure subjected to laser irradiation

, , &
Pages 229-242 | Received 25 Jan 2017, Accepted 12 Jun 2017, Published online: 09 Jul 2017

References

  • Tuan VD. (2003). Biomedical photonics handbook. Boca Roton, FL: CRC Press.
  • Diagaradjane P, Shetty A, Wang JC, et al. (2008). Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: Characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. NanoLetters 8:1492–500.
  • Feng Y, Fuentes D, Hawkins A, et al. (2009). Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Engin Comp 25:3–13.
  • Maltzahn MV, Park J, Agarwal HA, et al. (2009). Computationally guided photothermal tumor therapy using long-Circulating gold nanorod antennas. Canc Res 69:3892–900.
  • Dasgupta D, Maltzahn G, Ghosh VS, et al. (2009). Probing nanoantenna-directed photothermal destruction of tumors using noninvasive laser irradiation. Appl Phys Lett 95:233701–6.
  • Bayazitaglou Y. (2009). Nanoshell assisted cancer thermal therapy: numerical simulations. Proceedings of the ASME 2nd Micro/Nanoscale Heat Mass Transfer International Conference, 18546.
  • Pennes HH. (1948). Analysis of tissue and arterial blood temperature in the resting Forearm. J Appl Physiol 1:93–122.
  • Dai T, Pikkula BM, Wang LV, Anvari B. (2004). Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation. Phys Med Biol 49:4861–77.
  • NickelHermann S, Essenpreis MM, Farrell T, et al. (2000). Anisotropy of light propagation in human skin. Phys Med Biol 45:2873–86.
  • Graßmann A, Peters F. (1999). Experimental investigation of heat conduction in wet sand. Heat Mass Trans 35:289.
  • Herwig H, Beckert K. (2000). Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a non-homogeneous inner structure. Heat Mass Trans 36:387–92.
  • Kaminiski W. (1990). Hyperbolic heat conduction equation for material with a nonhomogenous inner structure. ASME J Heat Trans 112:555–60.
  • Mitraa K, Kumar S, Vedavarz A, Moallemi MK. (1995). Experimental evidence of hyperbolic heat conduction in processed meat. ASME J Heat Trans 112:555–73.
  • Roetzel W, Putra N, Das SK. (2005). Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int J Thermal Sci 42:541–52.
  • Antaki PJ. (2005). New interpretation of non-Fourier heat conduction in processed meat. J Heat Trans 127:189–93.
  • Liu KC, Chen HT. (2010). Investigation for the dual phase lags behaviour of bio-heat transfer. Int J Thermal Sci 49:1138–46.
  • Liu KC, Chen HT. (2009). Analysis for the dual phase lag bio-heat transfer during magnetic hyperthermia treatment. Int Heat Mass Trans 52:1185–92.
  • Liu KC. (2011). Nonlinear behavior of thermal lagging in concentric living tissues with Gaussian distribution source. Int J Heat Mass Trans 54:2829–36.
  • Jiang X, Qi H. (2012). Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative. J Phys A: Math Theor 45:485101.
  • Liu KC, Wang JC. (2014). Analysis of thermal damage to laser irradiated tissue based on the dual-phase-lag model. Int J Heat Mass Trans 70:621–8.
  • Kumar S, Srivastava A. (2015). Thermal analysis of laser-irradiated tissue phantoms using dual phase lag model coupled with transient radiative transfer. Int J Heat Mass Trans 90:466–79.
  • Patidar S, Kumar S, Srivastava A, Singh S. (2016). Dual phase lag model-based thermal analysis of tissue phantoms using lattice Boltzmann method. Int J Thermal Sci 103:41–56.
  • Phadnis A, Kumar S, Srivastava A. (2016). Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells. J. Therm Biol 61:16–28.
  • Kennedy LC, Bickford LR, Lewinski NA, et al. (2011). A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7:169–83.
  • Huang X, El-Sayed IH, El-Sayed Method MA. (2010). Applications of gold nanorods for cancer imaging and photothermal therapy. Mol Biol 624:343–57.
  • Loo CA, Lowery A, Halas N, et al. (2005). Immunotargeted nanoshells for integrated cancer imaging and therapy. NanoLetters 5:709–11.
  • Huang X, El-Sayed IH, Qian W, El-Sayed MA. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–20.
  • Dickerson EB, Dreaden E, Huang C, et al. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Canc Lett 269:57–66.
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. (2008). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217.
  • El-Sayed IH, Huang X, El-Sayed MA. (2006). Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–35.
  • Xu X, Meade A, Bayazitoglu Y. (2011). Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy toward tumor and cancer treatments. Lasers Med Sci 26:213–22.
  • Zhou F, Xing D, Ou Z, et al. (2009). Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14:021009.
  • Burkea A, Dingb X, Singha R, et al. (2009). Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared. Proc Natl Acad Sci 106:12897.
  • WongKam N, O’Connell SM, Wisdom JA, Dai H. (2005). Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci 102:11600.
  • Huang X, Qian W, El-Sayed H, El-Sayed MA. (2007). The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Laser Surg Med 39:747–53.
  • Jaunich M, Raje S, Kim K, et al. (2008). Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int J Heat Mass Trans 51:5511–21.
  • Sahoo S, Ghosh N, Narasimhan SA, Das SK. (2014). Investigation of non-Fourier effects in bio-tissues during laser assisted photothermal therapy. Int J Therm Sci 76:208–20.
  • Sajanlal PR, Sreeprasad TS, Nair AS, Pradeep T. (2008). Wires, plates, flowers, needles, and core–shells: diverse nanostructures of gold using polyaniline templates. Langmuir 24:4607–14.
  • Sajanlal PR, Pradeep T. (2009). Mesoflowers: a new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Res 2:306–20.
  • Ghosh S, Sahoo N, Sajanlal PR, et al. (2014). Anomalous subsurface thermal behavior in tissue mimics upon near infrared irradiation mediated photothermal therapy. J Biomed Nanotechnol 10:405–14.
  • Incropera FP, Dewitt DP. (2001). Fundamental of heat and mass transfer, 5th edn. New York: John Wiely and Sons.
  • ComsolMultiphysics 3.4 software.
  • Hawkins CL, Davies MJ. (2001). Generation and propagation of radical reactions on proteins. Biochi Biophy Acta 15:196–219.
  • Halliwell B, Gutteridge J. (1999). Free radicals in biology and medicine, Oxford: Oxford University Press.
  • Miles CA, Bailey AJ. (1999). Thermal denaturation of collagen revisited. J Chem Sci 111:71.
  • Bella J, Brodsky B, Berman HM. (1995). Hydration structure of a collagen peptide. Structure 15:893–906.
  • Bozec L, Odlyha M. (2011). Thermal denaturation studies of collagen b microthermal analysis and atomic force microscopy. Biophys J 101:228–36.
  • Miles CA, Burjanadze TV, Bailey AJ. (1995). The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J Mol Biol 245:437–46.
  • Kawahara H, Nishi KY, Nakamura S, et al. (2005). Effect of hydration on the stability of the collagen-like triple-helical structure of [4(R)-Hydroxyprolyl-4(R)-hydroxyl-prolylglycine]10. Biochem 44:15812–22.
  • De Groot J. (2007). Damage assessment of parchment with scanning probe microscopy. UK: University of London.
  • Payen K, Veis A. (1988). Fourier transform infrared spectroscopy of collagen and gelatin: deconvolution of the amide I band for conformational studies. Biopolymer 27:1749–60.
  • Dumitrascu M, Meltzer V, Sima E, et al. (2011). Characterization of electron beam irradiated collagen-polyvinylpyrrolidone (PVP) and collagen-dextran (DEX) blends. J Nanomat Biostruct 6:1793.
  • Sachlos E, Reis N, Ainsley C, et al. (2003). Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24:1487–97.
  • Hea L, Mub Shi CJ, et al. (2011). Modification of collagen with a natural cross-linker, procyanidin. Int J Biol Macromol 48:354–59.
  • Kaminska A, Sionkowska A. (1996). Effect of UV radiation on the infrared spectra of collagen. Polym Degrad Stab 51:19–26.
  • Rabotyagova OS, Cebe P, Kaplan DL. (2008). Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater Sci Eng C: Mater Biol Appl Eng 28:1420–9.
  • Sionkowska A. (2006). Effects of solar radiation on collagen and chitosan films. J Photochem Photobiol B: Biol 82:9–15.
  • DeCampos B, Luiza VM, Mello S. (2011). Collagen type I amide I band infrared spectroscopy. Micro 42:283–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.