2,142
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Thermal shock susceptibility and regrowth of Pseudomonas aeruginosa biofilms

ORCID Icon, , , &
Pages 168-176 | Received 31 Mar 2017, Accepted 24 Jun 2017, Published online: 02 Mar 2018

References

  • Tran N, Tran PA. (2012). Nanomaterial-based treatments for medical device-associated infections. ChemPhysChem 13:2481–94.
  • Darouiche RO. (2004). Treatment of infections associated with surgical implants. N Engl J Med 350:1422–9.
  • Ammerlaan HSM, Harbarth S, Buiting AGM, et al. (2013). Secular trends in nosocomial bloodstream infections: antibiotic-resistant bacteria increase the total burden of infection. Clin Infect Dis 56:798–805.
  • Wisplinghoff H, Bischoff T, Tallent SM, et al. (2004). Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–17.
  • Wisplinghoff H, Ewertz B, Wisplinghoff S, et al. (2005). Molecular evolution of methicillin-resistant Staphylococcus aureus in the metropolitan area of Cologne, Germany, from 1984 to 1998. J Clin Microbiol 43:5445–51.
  • Rohde H, Burandt EC, Siemssen N, et al. (2007). Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–20.
  • Gbejuade HO, Lovering AM, Webb JC. (2015). The role of microbial biofilms in prosthetic joint infections. Acta Orthop 86:147–58.
  • Francolini I, Donelli G. (2010). Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–38.
  • Zhang B, Powers R. (2012). Analysis of bacterial biofilms using NMR-based metabolomics. Future Med Chem 4:1273–306.
  • Haussler S, Fuqua C. (2013). Biofilms 2012: new discoveries and significant wrinkles in a dynamic field. J Bacteriol 195:2947–58.
  • Piddock LJV. (2006). Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–36.
  • Costerton JW, Stewart PS, Greenberg EP. (1999). Bacterial biofilms: a common cause of persistent infections. Science 284:1318–22.
  • Anderl JN, Zahller J, Roe F, et al. (2003). Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47:1251–6.
  • Anwar H, Strap JL, Costerton JW. (1992). Susceptibility of biofilm cells of Pseudomonas aeruginosa to bactericidal actions of whole blood and serum. FEMS Microbiol Lett 92:235–42.
  • Andrews JM. (2001). Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16.
  • Bundtzen RW, Gerber AU, Cohn DL, et al. (1981). Postantibiotic suppression of bacterial growth. Rev Infect Dis 3:28–37.
  • Meng Z, Chongjin S, You X, et al. (2006). Characteristics of baicalin synergy with penicillin or Notopterygium ethanol extracts against Staphylococcus aureus. Tsinghua Sci Technol 11:459–61.
  • Ceri H, Olson ME, Stremick C, et al. (1999). The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–6.
  • Abdi-Ali A, Mohammadi-Mehr M, Agha Alaei Y. (2006). Bactericidal activity of various antibiotics against biofilm-producing Pseudomonas aeruginosa. Int J Antimicrob Agents 27:196–200.
  • Hengzhuang W, Wu H, Ciofu O, et al. (2011). Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55:4469–74.
  • Walters MC III, Roe F, Bugnicourt A, et al. (2003). Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–23.
  • Horswill AR, Stoodley P, Stewart PS, et al. (2007). The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387:371–80.
  • Majik MS, Naik D, Bhat C, et al. (2013). Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa. Bioorg Med Chem Lett 23:2353–6.
  • Parsek MR, Greenberg EP. (2000). Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. PNAS 97:8789–93.
  • Kalia VC. (2013). Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–45.
  • Cady NC, McKean KA, Behnke J, et al. (2012). Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 7:e38492.
  • Fernandes A, Dias M. (2013). The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms. J Clin Diagnos Res 7:219–23.
  • Howlin RP, Brayford MJ, Webb JS, et al. (2015). Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob Agents Chemother 59:111–20.
  • Vadillo-Rodríguez V, Pacha-Olivenza MA, Gónzalez-Martín ML, et al. (2013). Adsorption behavior of human plasma fibronectin on hydrophobic and hydrophilic Ti6Al4V substrata and its influence on bacterial adhesion and detachment. J Biomed Mater Res A 101:1397–404.
  • van der Borden AJ, van der Mei HC, Busscher HJ. (2005). Electric block current induced detachment from surgical stainless steel and decreased viability of Staphylococcus epidermidis. Biomaterials 26:6731–5.
  • van der Borden AJ, Maathuis PGM, Engels E, et al. (2007). Prevention of pin tract infection in external stainless steel fixator frames using electric current in a goat model. Biomaterials 28:2122–6.
  • van der Borden AJ, van der Werf H, van der Mei HC, et al. (2004). Electric current-induced detachment of Staphylococcus epidermidis biofilms from surgical stainless steel. Appl Environ Microbiol 70:6871–4.
  • Carmen JC, Roeder BL, Nelson JL, et al. (2005). Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am J Infect Control 33:78–82.
  • Howlin RP, Fabbri S, Offin DG, et al. (2015). Removal of dental biofilms with an ultrasonically activated water stream. J Dent Res 94:1303–9.
  • Kiran S, Sharma P, Harjai K, et al. (2011). Enzymatic quorum quenching increases antibiotic susceptibility of multidrug resistant Pseudomonas aeruginosa. Iran J Microbiol 3:1–12.
  • Lauderdale KJ, Malone CL, Boles BR, et al. (2010). Biofilm dispersal of community-associated methicillin-resistant Staphylococcus aureus on orthopedic implant material. J Orthop Res 28:55–61.
  • Kim J, Kwon S, Ostler E. (2009). Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy. J Biol Eng 3:20–9.
  • Loo CY, Rohanizadeh R, Young PM, et al. (2015). Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J Agric Food Chem 64:2513–22.
  • Chmielewski RAN, Frank JF. (2006). A predictive model for heat inactivation of Listeria monocytogenes biofilm on buna-N rubber. LWT 39:11–19.
  • Wahlen L, Parker A, Walker D, et al. (2016). Predictive modeling for hot water inactivation of planktonic and biofilm-associated Sphingomonas parapaucimobilis to support hot water sanitization programs. Biofouling 32:751–61.
  • Park H, Park HJ, Kim JA, et al. (2011). Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J Microbiol Methods 84:41–5.
  • Nguyen HTT, Corry JEL, Miles CA. (2006). Heat resistance and mechanism of heat inactivation in thermophilic campylobacters. Appl Environ Microbiol 72:908–13.
  • O’Toole A, Ricker EB, Nuxoll E. (2015). Thermal mitigation of Pseudomonas aeruginosa biofilms. Biofouling 31:665–75.
  • Montanaro L, Speziale P, Campoccia D, et al. (2011). Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 6:1329–49.
  • Borrelli MJ, Thomas LL, Cain CA, et al. (1990). Time-temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43.5 °C to 57.0 °C. Int J Radiat Oncol Biol Phys 19:389–99.
  • Coffel J, Nuxoll E. (2015). Magnetic nanoparticle/polymer composites for medical implant infection control. J Mater Chem B 3:7538–45.
  • Coffel J, Nuxoll E. (2016). Poly(vinyl alcohol) tissue phantoms as a robust in vitro model for heat transfer. Int J Polym Mater Polym Biomater 65:797–806.
  • Yarmolenko PS, Moon EJ, Landon C, et al. (2011). Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia 27:320–43.
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, et al. (2003). Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19:267–94.
  • Li Z, Clarke AJ, Beveridge TJ. (1996). A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division, and secretion in surface membrane vesicles. J Bacteriol 178:2479–88.
  • Moran E, Byren I, Atkins BL. (2010). The diagnosis and management of prosthetic joint infections. J Antimicrob Chemother 65:iii45–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.