6,349
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles

, , , , , , , , , , & show all
Pages 373-381 | Received 09 Jun 2017, Accepted 08 Jul 2017, Published online: 31 Jul 2017

References

  • Gupta AK, Gupta M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021.
  • Johannsen M, Gneveckow U, Eckelt L, et al. (2005). Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperther 21:637–47.
  • Lee H-Y, Li Z, Chen K, et al. (2008). PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 49:1371–9.
  • Huang H, Delikanli S, Zen H, et al. (2010). Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5:602–6.
  • Maier-Hauff K, Ulrich F, Nestler D, et al. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–24.
  • McCormack PL. (2012). Ferumoxytol: in iron deficiency anaemia in adults with chronic kidney disease. Drugs 72:2013–22.
  • Kirschbaum K, Sonner JK, Zeller MW, et al. (2016). In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Nat Acad Sci 113:13227–32.
  • Liu Y, Yang Y, Zhang C. (2013). A concise review of magnetic resonance molecular imaging of tumor angiogenesis by targeting integrin αvβ3 with magnetic probes. Int J Nanomed 8:1083–93.
  • Xu C, Sun S. (2013). New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–43.
  • Bullivant JP, Zhao S, Willenberg BJ, et al. (2013). Materials characterization of Feraheme/Ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int J Mol Sci 14:17501–10.
  • Marchal S, El Hor A, Millard M, et al. (2015). Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs 75:1601–11.
  • Bashir MR, Bhatti L, Marin D, Nelson RC. (2015). Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41:884–98.
  • Jenner GA, Longerich HP, Jackson SE, Fryer BJ. (1990). ICP-MS—a powerful tool for high-precision trace-element analysis in earth sciences: evidence from analysis of selected USGS reference samples. Chem Geol 83:133–48.
  • Elsaesser A, Taylor A, de Yanés, et al. (2010). Quantification of nanoparticle uptake by cells using microscopical and analytical techniques. Nanomedicine 5:1447–57.
  • Patil US, Adireddy S, Jaiswal A, et al. (2015). In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. Int J Mol Sci 16:24417–50.
  • Rimkus G, Bremer-Streck S, Grüttner C, et al. (2011). Can we accurately quantify nanoparticle associated proteins when constructing high-affinity MRI molecular imaging probes? Contrast Media Mol Imaging 6:119–25.
  • DeNardo SJ, DeNardo GL, Miers LA, et al. (2005). Development of tumor targeting bioprobes (111In-Chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res 11:7087s–92s.
  • DeNardo SJ, DeNardo GL, Natarajan A, et al. (2007). Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice. J Nucl Med 48:437–444.
  • Natarajan A, Gruettner C, Ivkov R, et al. (2008). NanoFerrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics. Bioconjugate Chem 19:1211–18.
  • Grüttner C, Müller K, Teller J, et al. (2007). Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy. J Magn Mag Mat 311:181–6.
  • Baiu DC, Artz NS, McElreath MR, et al. (2015). High specificity targeting and detection of human neuroblastoma using multifunctional anti-GD2 iron-oxide nanoparticles. Nanomedicine (Lond) 10:2973–88.
  • Behnam Azad B, Banerjee SR, Pullambhatha M, et al. (2015). Evaluation of a PSMA-targeted BNF nanoparticle construct. Nanoscale 7:4432–42.
  • Dennis CL, Jackson AJ, Borchers JA, et al. (2009). Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 20:395103.
  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M. (2011). Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23.
  • Wabler M, Zhu W, Hedayati M, et al. (2014). Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content. Int J Hyperthermia 30:192–200.
  • Hussain SM, Hess KL, Gearhart JM, et al. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–83.
  • Xu H, Aguilar ZP, Yang L, et al. (2011). Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32:9758–65.
  • Kasten A, Grüttner C, Kühn J-P, et al. (2014). Comparative in vitro study on magnetic iron oxide nanoparticles for MRI tracking of adipose tissue-derived progenitor cells. PLoS One 9:e108055.
  • Kilian T, Fidler F, Kasten A, et al. (2016). Stem cell labeling with iron oxide nanoparticles: impact of 3D culture on cell labeling maintenance. Nanomedicine (Lond.) 11:1957–70.
  • Pröfrock D, Prange A. (2012). Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl Spectrosc 66:843–68.
  • Stookey LL. (1970). Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–81.
  • Hennessy DJ, Reid GR, Smith FE, Thompson SL. (1984). Ferene – a new spectrophotometric reagent for iron. Can J Chem 62:721–4.
  • Fish WW. (1988). Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol 158:357–64.
  • Riemer J, Hoepken HH, Czerwinska H, et al. (2004). Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–5.
  • Rad AM, Janic B, Iskander ASM, et al. (2007). Measurement of quantity of iron in magnetically labeled cells: comparison among different UV/VIS spectrometric methods. Biotechniques 43:627–35.
  • Dadashzadeh ER, Hobson M, Bryant LH, et al. (2013). Rapid spectrophotometric technique for quantifying iron in cells labeled with superparamagnetic iron oxide nanoparticles: potential translation to the clinic. Contrast Media Mol Imaging 8:50–6.
  • Bordelon DE, Cornejo C, Gruttner C, et al. (2011). Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys 109:124904.
  • Dennis CL, Krycka KL, Borchers JA, et al. (2015). Internal magnetic structure of nanoparticles dominates time‐dependent relaxation processes in a magnetic field. Adv Funct Mater 25:4300–11.
  • Grüttner C, Teller J, Schütt W, et al. (1997). Preparation and characterization of magnetic nanospheres for in vivo application. In: Hafeli UO, Schütt W, Teller J, Zborowski M, eds. Scientific and clinical application of magnetic carriers. New York: Plenum Press, 53–68.
  • Hedayati M, Thomas O, Abubaker-Sharif B, et al. (2013). The effect of cell cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors? Nanomedicine 8:29–41.
  • Derman DP, Green A, Bothwell TH, et al. (1989). A systematic evaluation of bathophenanthroline, ferrozine and ferene in an ICSH-based method for the measurement of serum iron. Ann Clin Biochem 26:144–7.
  • Carter P. (1971). Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 40:450–8.
  • Gibbs CR. (1976). Characterization and application of ferrozine iron reagent as a ferrous iron indicator. Anal Chem 48:1197–201.
  • Artiss JD, Vinogradov S, Zak B. (1981). Spectrophotometric study of several sensitive reagents for serum iron. Clin Biochem 14:311–15.
  • Pieroni L, Khalil L, Charlotte F, et al. (2001). Comparison of bathophenanthroline sulfonate and ferene as chromogens in colorimetric measurement of low hepatic iron concentration. Clin Chem 47:2059–61.