1,835
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models

&
Pages 671-686 | Received 07 Mar 2017, Accepted 07 Aug 2017, Published online: 18 Oct 2017

References

  • Gilchrist RK, Medal R, Shorey WD, et al. (1957). Selective inductive heating of lymph nodes. Ann Surg 146:596–606.
  • Johannsen M, Gneveckow U, Eckelt L, et al. (2005). Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21:637–47.
  • Thiesen B, Jordan A. (2008). Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24:467–74.
  • An online search conducted on 23 November 2016 of the Web of Science and PubMed databases, using ‘magnet* and hypertherm*’ as the topic search item, yielded 741 unique hits.
  • Online search conducted on 23 November 2016 of the European Commission’s Cordis website, using ‘magnetic hyperthermia’ as the search term, and limiting the search to projects that had started on or after 1 June 2011. Fifteen projects were identified: MultiFunSome, NoCanTher, Icaro, Confines, OUTstandINg, Lumimagnet-Nano, DualNanoTher, iPaCT, Nanomag-SQ, Janus Dynamics, NanoMag, DMH, Dartrix, Mencofinas, and MultiFun.
  • See, for example, the EU Horizon 2020 project ‘NoCanTher: Nanomedicine upscaling for early clinical phases of multimodal cancer therapy’. (2016). Available from: http://cordis.europa.eu/project/rcn/200812_en.html.
  • Dobrovolskaia MA, McNeil SE. (2007). Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–78.
  • Lee N, Yoo D, Ling D, et al. (2015). Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115:10637–89.
  • Simberg D. (2016). Iron oxide nanoparticles and the mechanisms of immune recognition of nanomedicines. Nanomedicine (Lond) 11:741–3.
  • Wust P, Gneveckow U, Wust P, et al. (2009). Magnetic nanoparticles for interstitial thermotherapy – feasibility, tolerance and achieved temperatures. Int J Hyperthermia 22:673–85.
  • Hergt R, Dutz S. (2007). Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311:187–92.
  • Krishnan KM. (2010). Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–58.
  • Pankhurst QA, Thanh NKT, Jones SK, Dobson J. (2009). Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224001–15.
  • Torres-Lugo M, Rinaldi C. (2013). Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine (London, England) 8:1689–707.
  • Attaluri A, Kandala SK, Wabler M, et al. (2015). Magnetic nanoparticle hyperthermia enhances radiation therapy: a study in mouse models of human prostate cancer. Int J Hyperthermia 31:359–74.
  • Brace C. (2011). Thermal tumor ablation in clinical use. IEEE Pulse 2:28–38.
  • Salloum M, Ma RH, Weeks D, Zhu L. (2008). Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int J Hyperthermia 24:337–45.
  • LeBrun A, Joglekar T, Bieberich C, et al. (2016). Identification of infusion strategy for achieving repeatable nanoparticle distribution and quantification of thermal dosage using micro-CT Hounsfield unit in magnetic nanoparticle hyperthermia. Int J Hyperthermia 32:132–43.
  • Allard E, Passirani C, Benoit J-P. (2009). Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30:2302–18.
  • Gill T, Barua NU, Woolley M, et al. (2013). In vitro and in vivo testing of a novel recessed-step catheter for reflux-free convection-enhanced drug delivery to the brain. J Neurosci Methods 219:1–9.
  • Lewis O, Woolley M, Johnson D, et al. (2016). Chronic, intermittent convection-enhanced delivery devices. J Neurosci Methods 259:47–56.
  • Barua NU, Lowis SP, Woolley M, et al. (2013). Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochirurg (Wien)155:1459–65.
  • Golneshan AA, Lahonian M. (2011). Diffusion of magnetic nanoparticles in a multi-site injection process within a biological tissue during magnetic fluid hyperthermia using lattice Boltzmann method. Mech Res Commun 38:425–30.
  • Di Michele F, Pizzichelli G, Mazzolai B, Sinibaldi E. (2015). On the preliminary design of hyperthermia treatments based on infusion and heating of magnetic nanofluids. Math Biosci 262:105–16.
  • Hensley D, Tay ZW, Dhavalikar R, et al. (2017). Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys Med Biol 62:3483–500.
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. (2003). Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–81.
  • Alanen A, Bondestam S, Komu M. (1995). Artifacts in MR imaging caused by small quantities of powdered iron. Acta Radiol 36:92–5.
  • Gellermann J, Wust P, Stalling D, et al. (2000). Clinical evaluation and verification of the hyperthermia treatment planning system hyperplan. Int J Radiat Oncol Biol Phys 47:1145–56.
  • Sreenivasa G, Gellermann J, Rau B, et al. (2003). Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity. Int J Radiat Oncol Biol Phys 55:407–19.
  • Gneveckow U, Jordan A, Scholz R, et al. (2004). Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Med Phys 31:1444–51.
  • Attaluri A, Ma R, Qiu Y, et al. (2011). Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia. Int J Hyperthermia 27:491–502.
  • Dähring H, Grandke J, Teichgräber U, Hilger I. (2015). Improved hyperthermia treatment of tumors under consideration of magnetic nanoparticle distribution using micro-CT imaging. Mol Imaging Biol 17:763–9.
  • LeBrun A, Ma R, Zhu L. (2016). MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment. J Therm Biol 62:129–37.
  • Urata M, Kijima Y, Hirata M, et al. (2014). Computed tomography Hounsfield units can predict breast cancer metastasis to axillary lymph nodes. BMC Cancer 14:730.
  • Lonser RR, Warren KE, Butman JA, et al. (2007). Real-time image-guided direct convective perfusion of intrinsic brainstem lesions. Technical note. J Neurosurg 107:190–7.
  • Chen MY, Lonser RR, Morrison PF, et al. (1999). Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 90:315–20.
  • Maier-Hauff K, Ulrich F, Nestler D, et al. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–24.
  • Wikipedia website entry for ‘Fluid compartments’, accessed 1 December 2016.
  • Ahn CB, Cho ZH. (1991). Analysis of the eddy-current induced artifacts and the temporal compensation in nuclear magnetic resonance imaging. IEEE Trans Med Imaging 10:47–52.
  • Reilly JP, Applied bioelectricity: from electrical stimulation to electropathology: Springer Science & Business Media; 2012.
  • van Rhoon GC, Samaras T, Yarmolenko PS, et al. (2013). CEM43 °C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23:2215–27.
  • Sapareto SA, Dewey WC. (1984). Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800.
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, et al. (2003). Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19:267–94.
  • Horsman MR. (2016). Realistic biological approaches for improving thermoradiotherapy. Int J Hyperthermia 32:14–22.
  • Kok HP, Kotte A, Crezee J. (2017). Planning, optimisation and evaluation of hyperthermia treatments. Int J Hyperthermia 33:593–607.
  • Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Published by: Center for Drug Evaluation and Research, US Food and Drug Administration, USA, 2005.
  • Nair AB, Jacob S. (2016). A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31.
  • Richard BM, Rickert DE, Newton PE, et al. (2011). Safety evaluation of EXPAREL (DepoFoam Bupivacaine) administered by repeated subcutaneous injection in rabbits and dogs: species comparison. J Drug Deliv 2011:1–14.
  • Gong XL, Zhang XD, Li J, et al. (2013). Subchronic safety evaluation of EPO-018B, a pegylated peptidic erythropoiesis stimulating agent, after 5-week subcutaneous injection in Cynomolgus monkeys and Sprague-Dawley rats. Food Chem Toxicol 60:252–62.
  • Diehl KH, Hull R, Morton D, et al. (2001). A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21:15–23.
  • Maximum injection volumes and needle size recommendations (ACUC approved 10/14/2015). Published by: National Cancer Institute at Frederick, U.S. National Institutes of Health, 2015.
  • Giustini AJ, Ivkov R, Hoopes PJ. (2011). Magnetic nanoparticle biodistribution following intratumoral administration. Nanotechnology 22:345101.
  • Hassenbusch SJ, Nardone EM, Levin VA, et al. (2003). Stereotactic injection of DTI-015 into recurrent malignant gliomas: phase I/II trial. Neoplasia 5:9–16.
  • Ferucarbotran Resovist®: liver-specific contrast agent for MRI of focal liver lesions. Germany: Schering AG; 2002.
  • Prescribing information: Resovist. Israel: Agis Commercial Agencies (1989) Limited; 2002.
  • Feraheme™ ferumoxytol injection: highlights of prescribing information. USA: AMAG Pharmaceuticals Inc.; 2015.
  • Sienna+® for use with Sentimag®. UK: Endomag Limited; 2015.
  • Bazan-Peregrino M, Carlisle RC, Purdie L, Seymour LW. (2008). Factors influencing retention of adenovirus within tumours following direct intratumoural injection. Gene Therapy 15:688–94.
  • Curtis LT, Frieboes HB. (2016). The tumor microenvironment as a barrier to cancer nanotherapy. Adv Exp Med Biol 936:165–90.
  • Dewhirst MW, Lee CT, Ashcraft KA. (2016). The future of biology in driving the field of hyperthermia. Int J Hyperthermia 32:4–13.
  • Johannsen M, Gneveckow U, Thiesen B, et al. (2007). Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urology 52:1653–61.
  • Kossatz S, Ludwig R, Dahring H, et al. (2014). High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm Res 31:3274–88.
  • Kossatz S, Grandke J, Couleaud P, et al. (2015). Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 17:66.
  • Jordan A, Scholz R, Wust P, et al. (1997). Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia 13:587–605.
  • Cheng P-J, Liu K-C. (2009). Numerical analysis of bio-heat transfer in a spherical tissue. J Appl Sci 9:962–7.
  • Deng Z-S, Liu J: Analytical solutions to 3-D bioheat transfer problems with or without phase change: INTECH Open Access Publisher; 2012.
  • Fan J, Wang L. (2011). Analytical theory of bioheat transport. J Appl Phys 109:104702.
  • Giordano MA, Gutierrez G, Rinaldi C. (2010). Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia. Int J Hyperthermia 26:475–84.
  • Golneshan AA, Lahonian M. (2011). The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method. Int J Hyperthermia 27:266–74.
  • Kengne E, Lakhssassi A. (2015). Bioheat transfer problem for one-dimensional spherical biological tissues. Math Biosci 269:1–9.
  • Loureiro FS, Mansur WJ, Wrobel LC, Silva JEA. (2014). The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation. Int J Heat Mass Transf 76:393–404.
  • Rodrigues HF, Capistrano G, Mello FM, et al. (2017). Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography. Phys Med Biol 62:4062–82.
  • Pennes HH. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122.
  • Andrä W, d’Ambly C, Hergt R, et al. (1999). Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater 194:197–203.
  • Kallumadil M, Tada M, Nakagawa T, et al. (2009). Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321:1509–13.
  • Dennis CL, Krycka KL, Borchers JA, et al. (2015). Internal magnetic structure of nanoparticles dominates time-dependent relaxation processes in a magnetic field. Adv Funct Mater 25:4300–11.
  • Ota S, Yamada T, Takemura Y. (2015). Magnetization reversal and specific loss power of magnetic nanoparticles in cellular environment evaluated by AC hysteresis measurement. J Nanomater 2015:1–8.
  • Harvey PR, Katznelson E. (1999). Modular gradient coil: a new concept in high-performance whole-body gradient coil design. Magn Reson Med 42:561–70.
  • Kallumadil M, Tada M, Nakagawa T, et al. (2009). Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321:3650–1.
  • Hasgall PA, Di Gennaro F, Baumgartner C, et al. IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 3.1, October 13, 2016; DOI: 10.13099/VIP21000-03-1.
  • Atkinson WJ, Brezovich IA, Chakraborty DP. (1984). Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng BME-31:70–5.
  • Wildeboer RR, Southern P, Pankhurst QA. (2014). On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D Appl Phys 47:495003.
  • Buggy DJ, Crossley AW. (2000). Thermoregulation, mild perioperative hypothermia and postanaesthetic shivering. Br J Anaesth 84:615–28.
  • Caro AC, Hankenson FC, Marx JO. (2013). Comparison of thermoregulatory devices used during anesthesia of C57BL/6 mice and correlations between body temperature and physiologic parameters. J Am Assoc Lab Anim Sci 52:577–83.
  • Fertman VE, Golovicher LE, Matusevich NP. (1987). Thermal conductivity of magnetite magnetic fluids. J Magn Magn Mater 65:211–4.
  • Johannsen M, Thiesen B, Jordan A, et al. (2005). Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 64:283–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.