7,167
Views
66
CrossRef citations to date
0
Altmetric
Reviews

Progress on utilizing hyperthermia for mitigating bacterial infections

, &
Pages 144-156 | Received 24 Feb 2017, Accepted 15 Aug 2017, Published online: 02 Mar 2018

References

  • Mackowiak PA. (1981). Direct effects of hyperthermia on pathogenic microorganisms: teleologic implications with regard to fever. Rev Infect Dis 3:508–20.
  • Tsuchido T, Katsui N, Takeuchi A, et al. (1985). Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appl Environ Microbiol 50:298–303.
  • Menezes S, Teixeira P. (1992). Lethal interaction between heat and methylene blue in Escherichia coli. Int J Hyperthermia 8:689–99.
  • Mackey B. (1983). Changes in antibiotic sensitivity and cell surface hydrophobicity in Escherichia coli injured by heating, freezing, drying or gamma radiation. FEMS Microbiol Lett 20:395–9.
  • Tsuchido T, Aoki I, Takano M. (1989). Interaction of the fluorescent dye lN-phenylnaphthylamine with Escherichia coli cells during heat stress and recovery from heat stress. Microbiology 135:1941–7.
  • Yatvin MB. (1977). The influence of membrane lipid composition and procaine on hyperthermic death of cells. Int J Radiat Biol Relat Stud Phys Chem Med 32:513–21.
  • Eshraghi N, Wainberg RH, Walden TL, et al. (1994). Effects of heat and amino acid supplementation on the uptake of arginine and its incorporation into proteins in Escherichia coli. Int J Hyperthermia 10:79–88.
  • Donlan RM. (2001). Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–92.
  • O’Toole G, Kaplan HB, Kolter R. (2000). Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79.
  • Costerton JW, Stewart PS, Greenberg EP. (1999). Bacterial biofilms: a common cause of persistent infections. Science 284:1318–22.
  • Qin Z, Yang L, Qu D, et al. (2009). Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology 155:2148–56.
  • Flemming H-C, Wingender J. (2010). The biofilm matrix. Nat Rev Microbiol 8:623–33.
  • Yang L, Hu Y, Liu Y, et al. (2011). Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol 13:1705–17.
  • Olson ME, Ceri H, Morck DW, et al. (2002). Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86.
  • Costerton W, Veeh R, Shirtliff M, et al. (2003). The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–77.
  • Høiby N, Bjarnsholt T, Givskov M, et al. (2010). Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–32.
  • Stewart PS, Costerton JW. (2001). Antibiotic resistance of bacteria in biofilms. Lancet 358:135–8.
  • Molin S, Tolker-Nielsen T. (2003). Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–61.
  • Levin BR, Perrot V, Walker N. (2000). Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154:985–97.
  • Pozo J, Patel R. (2007). The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82:204–9.
  • Bjarnsholt T, Givskov M. (2008). Quorum sensing inhibitory drugs as next generation antimicrobials: worth the effort? Curr Infect Dis Rep10:22–8.
  • Hall-Stoodley L, Costerton JW, Stoodley P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108.
  • Rendueles O, Travier L, Latour-Lambert P, et al. (2011). Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. MBio 2:e00043–11.
  • Banin E, Brady KM, Greenberg EP. (2006). Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72:2064–9.
  • Balaban N, Cirioni O, Giacometti A, et al. (2007). Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother 51:2226–9.
  • de la Fuente-Núñez C, Korolik V, Bains M, et al. (2012). Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–704.
  • Stoodley P, Lappin-Scott H. (1997). Influence of electric fields and pH on biofilm structure as related to the bioelectric effect. Antimicrob Agents Chemother 41:1876–9.
  • Pavlovsky L, Sturtevant RA, Younger JG, Solomon MJ. (2015). Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. Langmuir 31:2036–42.
  • Richardson IP, Sturtevant R, Heung M, et al. (2016). Hemodialysis catheter heat transfer for biofilm prevention and treatment. ASAIO J 62:92–9.
  • Sturtevant RA, Sharma P, Pavlovsky L, et al. (2015). Thermal augmentation of vancomycin against staphylococcal biofilms. Shock 44:121–7.
  • Hajdu S, Holinka J, Reichmann S, et al. (2010). Increased temperature enhances the antimicrobial effects of daptomycin, vancomycin, tigecycline, fosfomycin, and cefamandole on staphylococcal biofilms. Antimicrob Agents Chemother 54:4078–84.
  • Kluger MJ, Rothenburg BA. (1979). Fever and reduced iron: their interaction as a host defense response to bacterial infection. Science 203:374–6.
  • Bennett IL, Jr, Nicastri A. (1960). Fever as a mechanism of resistance. Bacteriol Rev 24:16.
  • Kluger MJ. (1978). The evolution and adaptive value of fever: long regarded as a harmful by-product of infection, fever may instead be an ancient ally against disease, enhancing resistance and increasing chances of survival. Am Sci 66:38–43.
  • Weinberg ED. (1978). Iron and infection. Microbiol Rev 42:45.
  • Rosenberg H, Gallin J. (1999). Inflammation. In: fundamental immunology. Ely (MN): Raven Publishers, 1051–66.
  • Ostberg JR, Taylor SL, Baumann H, Repasky EA. (2000). Regulatory effects of fever-range whole-body hyperthermia on the LPS-induced acute inflammatory response. J Leukoc Biol 68:815–20.
  • Baumann H, Gauldie J. (1994). The acute phase response. Immunol Today 15:74–80.
  • Seth AK, Geringer MR, Hong SJ, et al. (2012). Comparative analysis of single-species and polybacterial wound biofilms using a quantitative, in vivo, rabbit ear model. PLoS One 7:e42897.
  • Jiang Q, DeTolla L, van Rooijen N, et al. (1999). Febrile-range temperature modifies early systemic tumor necrosis factor alpha expression in mice challenged with bacterial endotoxin. Infect Immun 67:1539–46.
  • Rosi-Marshall EJ, Kelly JJ. (2015). Antibiotic stewardship should consider environmental fate of antibiotics. Environ Sci Technol 49:5257–8.
  • Center for Disease Control and Prevention. (2013). Antibiotic resistance threats in the United States. Washington (DC): US Department of Health and Human Services.
  • Spellberg B, Guidos R, Gilbert D, et al. (2008). The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–64.
  • Stevens DL, Bisno AL, Chambers HF, et al. (2005). Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis 41:1373–406.
  • Delgado-Rodríguez M, Sillero-Arenas M, Medina-Cuadros M, Martínez-Gallego G. (1997). Nosocomial infections in surgical patients: comparison of two measures of intrinsic patient risk. Infect Control Hosp Epidemiol 18:19–23.
  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306.
  • Richards MJ, Edwards JR, Culver DH, Gaynes RP. (1999). Nosocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system. Crit Care Med 27:887–92.
  • Weinstein RA, Darouiche RO. (2001). Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33:1567–72.
  • Sandora TJ, Goldmann DA. (2012). Preventing lethal hospital outbreaks of antibiotic-resistant bacteria. N Engl J Med 6;367:2168–70.
  • French GL, Otter JA, Shannon K, et al. (2004). Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp Infect 57:31–7.
  • Otter JA, Yezli S, French GL. (2011). The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect Control Hosp Epidemiol 32:687–99.
  • Huang SS, Datta R, Platt R. (2006). Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch Intern Med 166:1945–51.
  • Snitkin ES, Zelazny AM, Thomas PJ, et al. (2012). Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4:148ra116.
  • Lebeaux D, Ghigo J-M, Beloin C. (2014). Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78:510–43.
  • White RJ, Cutting KF. (2006). Critical colonization-the concept under scrutiny. Ostomy Wound Manage 52:50.
  • Bowler PG. (2003). The 10 (5) bacterial growth guideline: reassessing its clinical relevance in wound healing. Ostomy Wound Manage 49:44–53.
  • James GA, Swogger E, Wolcott R, et al. (2008). Biofilms in chronic wounds. Wound Repair Regen 16:37–44.
  • Gurjala AN, Geringer MR, Seth AK, et al. (2011). Development of a novel, highly quantitative in vivo model for the study of biofilm‐impaired cutaneous wound healing. Wound Repair Regen 19:400–10.
  • Robson MC. (1997). Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am 77:637–50.
  • Schierle CF, De la Garza M, Mustoe TA, Galiano RD. (2009). Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen 17:354–9.
  • Dryden MS. (2010). Complicated skin and soft tissue infection. J Antimicrob Chemother 65:iii35–44.
  • Stadelmann WK, Digenis AG, Tobin GR. (1998). Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176:26S–38S.
  • Fazli M, Bjarnsholt T, Kirketerp-Møller K, et al. (2009). Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47:4084–9.
  • Stevens DL, Bisno AL, Chambers HF, et al. (2014). Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 59:e10–52.
  • Puvanendran R, Huey JCM, Pasupathy S. (2009). Necrotizing fasciitis. Can Fam Physician 55:981–7.
  • Hakkarainen TW, Kopari NM, Pham TN, Evans HL. (2014). Necrotizing soft tissue infections: review and current concepts in treatment, systems of care, and outcomes. Curr Probl Surg 51:344–62.
  • Sadasivan J, Maroju NK, Balasubramaniam A. (2013). Necrotizing fasciitis. Indian J Plast Surg 46:472.
  • Fang RC, Galiano RD. (2009). Adjunctive therapies in the treatment of osteomyelitis. Semin Plast Surg 23:141–7. doi: 10.1055/s-0029-1214166
  • Cruse PJ. (1980). The epidemiology of wound infection. A 10-year prospective study of 62,939 wounds. Surg Clin North Am 60:27–40.
  • Zannis J, Angobaldo J, Marks M, et al. (2009). Comparison of fasciotomy wound closures using traditional dressing changes and the vacuum-assisted closure device. Ann Plast Surg 62:407–9.
  • Kaplan JB, Fine DH. (2002). Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria. Appl Environ Microbiol 68:4943–50.
  • Nguyen T-K, Duong HTT, Selvanayagam R, et al. (2015). Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci Rep 5:18385.
  • Bierman W. (1936). The temperature of the skin surface. J Am Med Assoc106:1158–62.
  • Xia Z, Sato A, Hughes MA, Cherry GW. (2000). Stimulation of fibroblast growth in vitro by intermittent radiant warming. Wound Repair Regen 8:138–44.
  • McGuiness W, Vella E, Harrison D. (2004). Influence of dressing changes on wound temperature. J Wound Care 13:383–5.
  • Kloth LC, Berman JE, Nett M, et al. (2002). A randomized controlled clinical trial to evaluate the effects of noncontact normothermic wound therapy on chronic full-thickness pressure ulcers. Adv Skin Wound Care 15:270–6.
  • Brace CL. (2009). Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol 38:135–43.
  • Friedman M, Mikityansky I, Kam A, et al. (2004). Radiofrequency ablation of cancer. Cardiovasc Intervent Radiol 27:427–34.
  • Kostrzewa JP, Sunde J, Riley KO, Woodworth BA. (2010). Radiofrequency coblation decreases blood loss during endoscopic sinonasal and skull base tumor removal. ORL 72:38–43.
  • Gerszten PC, Mendel E, Yamada Y. (2009). Radiotherapy and radiosurgery for metastatic spine disease: what are the options, indications, and outcomes? Spine 34:S78–S92.
  • Shah UK, Dunham B. (2007). Coblation for tonsillectomy: an evidence-based review. ORL 69:349–57.
  • Sönnergren HH, Strömbeck L, Faergemann J. (2012). Antimicrobial effects of plasma-mediated bipolar radiofrequency ablation on bacteria and fungi relevant for wound infection. Acta Derm Venereol 92:29–33.
  • Nusbaum AG, Gil J, Rippy MK, et al. (2012). Effective method to remove wound bacteria: comparison of various debridement modalities in an in vivo porcine model. J Surg Res 176:701–7.
  • Yang R, Zuo T, Zhu J, et al. (2013). Effect of radiofrequency ablation on healing of infected full-thickness wounds in minipigs. Int J Low Extrem Wounds 12:265–70.
  • Karadağ S, Özkiriş M, Kubilay U, Söyletir G. (2012). The effect of radiofrequency ablation on microbiology of the tonsils. Int J Pediatr Otorhinolaryngol 76:1654–7.
  • Costerton JW, Ellis B, Lam K, et al. (1994). Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother 38:2803–9.
  • Caubet R, Pedarros-Caubet F, Chu M, et al. (2004). A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob Agents Chemother 48:4662–4.
  • Skinner MG, Iizuka MN, Kolios MC, Sherar MD. (1998). A theoretical comparison of energy sources–microwave, ultrasound and laser–for interstitial thermal therapy. Phys Med Biol 43:3535–47.
  • Dreyfuss MS, Chipley JR. (1980). Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus. Appl Environ Microbiol 39:13–6.
  • Zeinali T, Jamshidi A, Khanzadi S, Azizzadeh M. (2015). The effect of short-time microwave exposures on Listeria monocytogenes inoculated onto chicken meat portions. Vet Res Forum 6:173–6.
  • De La Vega-Miranda B, Santiesteban-López NA, López-Malo A, Sosa-Morales ME. (2012). Inactivation of Salmonella typhimurium in fresh vegetables using water-assisted microwave heating. Food Control 26:19–22.
  • Jamshidi A, Seifi HA, Kooshan M. (2010). The effect of short-time microwave exposures on Escherichia coli O157:H7 inoculated onto beef slices. Afr J Microbiol Res 4:2371–4.
  • Rohrer MD, Terry MA, Bulard RA, et al. (1986). Microwave sterilization of hydrophilic contact lenses. Am J Ophthalmol 101:49–57.
  • Sahin A, Eiley D, Goldfischer ER, et al. (1998). The in vitro bactericidal effect of microwave energy on bacteria that cause prostatitis. Urology 52:411.
  • Welt B, Tong C, Rossen J, Lund D. (1994). Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3679) spores. Appl Environ Microbiol 60:482–8.
  • Dewey WC. (2009). Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 25:3–20.
  • Kim Y, Rhim H, Choi MJ, et al. (2008). High-intensity focused ultrasound therapy: an overview for radiologists. Korean J Radiol 9:291–302.
  • Zhou YF. (2011). High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol 2:8–27.
  • Iqbal K, Ohl SW, Khoo BC, et al. (2013). Effect of high-intensity focused ultrasound on Enterococcus faecalis planktonic suspensions and biofilms. Ultrasound Med Biol 39:825–33.
  • Rieck B, Bates D, Zhang K, et al. (2014). Focused ultrasound treatment of abscesses induced by methicillin resistant Staphylococcus aureus: feasibility study in a mouse model. Med Phys 41:063301.
  • Bigelow TA, Northagen T, Hill TM, Sailer FC. (2009). The destruction of Escherichia coli biofilms using high-intensity focused ultrasound. Ultrasound Med Biol 35:1026–31.
  • Dunavant TR, Regan JD, Glickman GN, et al. (2006). Comparative evaluation of endodontic irrigants against Enterococcus faecalis biofilms. J Endod 32:527–31.
  • Nair P. (2006). On the causes of persistent apical periodontitis: a review. Int Endod J 39:249–81.
  • Van der Sluis L, Versluis M, Wu M, Wesselink P. (2007). Passive ultrasonic irrigation of the root canal: a review of the literature. Int Endod J 40:415–26.
  • Parini MR, Pitt WG. (2006). Dynamic removal of oral biofilms by bubbles. Colloids Surf B Biointerfaces 52:39–46.
  • Shrestha A, Fong SW, Khoo BC, Kishen A. (2009). Delivery of antibacterial nanoparticles into dentinal tubules using high-intensity focused ultrasound. J Endod 35:1028–33.
  • Pitt WG, McBride MO, Lunceford JK, et al. (1994). Ultrasonic enhancement of antibiotic action on gram-negative bacteria. Antimicrob Agents Chemother 38:2577–82.
  • Rediske AM, Roeder BL, Brown MK, et al. (1999). Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model. Antimicrob Agents Chemother 43:1211–4.
  • Rediske AM, Hymas WC, Wilkinson R, Pitt WG. (1998). Ultrasonic enhancement of antibiotic action on several species of bacteria. J Gen Appl Microbiol 44:283–8.
  • Carmen JC, Nelson JL, Beckstead BL, et al. (2004). Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. J Infect Chemother 10:193–9.
  • Gera N, Doores S. (2011). Kinetics and mechanism of bacterial inactivation by ultrasound waves and sonoprotective effect of milk components. J Food Sci 76:M111–9.
  • Qian Z, Stoodley P, Pitt WG. (1996). Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation. Biomaterials 17:1975–80.
  • Carmen J, Roeder B, Nelson J, et al. (2004). Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo. J Biomater Appl 18:237–45.
  • Vollmer AC, Kwakye S, Halpern M, Everbach EC. (1998). Bacterial stress responses to 1-megahertz pulsed ultrasound in the presence of microbubbles. Appl Environ Microbiol 64:3927–31.
  • Feril LB, Jr, Tachibana K. (2012). Use of ultrasound in drug delivery systems: emphasis on experimental methodology and mechanisms. Int J Hyperthermia 28:282–9.
  • Runyan CM, Carmen JC, Beckstead BL, et al. (2006). Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa. J Gen Appl Microbiol 52:295–301.
  • Wardlow R, Bing C, VanOsdol J, et al. (2016). Targeted antibiotic delivery using low temperature-sensitive liposomes and magnetic resonance-guided high-intensity focused ultrasound hyperthermia. Int J Hyperthermia 32:254–64.
  • Weissleder R. (2001). A clearer vision for in vivo imaging. Nat Biotechnol 19:316–7.
  • Seil JT, Webster TJ. (2012). Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767–81.
  • Feng QL, Wu J, Chen GQ, et al. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–8.
  • Hassan M, Moharram A, Ismail M, Shoreit A. (2015). Biogenic silver nanoparticles of resistant Aspergillus flavus AUMC 9834 against some pathogenic microorganisms and its synergistic effect with the antifungal fluconazole. J Basic Appl Mycol Egypt 6:1–7.
  • Thompson EA, Graham E, MacNeill CM, et al. (2014). Differential response of MCF7, MDA-MB-231, and MCF 10A cells to hyperthermia, silver nanoparticles and silver nanoparticle-induced photothermal therapy. Int J Hyperthermia 30:312–23.
  • Hu B, Wang N, Han L, et al. (2015). Core–shell–shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria. Acta Biomater 11:511–9.
  • Eustis S, El-Sayed MA. (2006). Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–17.
  • Lukianova-Hleb E, Hu Y, Latterini L, et al. (2010). Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4:2109–23.
  • Galanzha EI, Shashkov E, Sarimollaoglu M, et al. (2012). In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles. PLoS One 7:e45557.
  • Kitz M, Preisser S, Wetterwald A, et al. (2011). Vapor bubble generation around gold nano-particles and its application to damaging of cells. Biomed Opt Express 2:291–304.
  • Meeker DG, Jenkins SV, Miller EK, et al. (2016). Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect Dis 2:241–50.
  • Pissuwan D, Valenzuela SM, Miller CM, Cortie MB. (2007). A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods. Nano Lett 7:3808–12.
  • Millenbaugh NJ, Baskin JB, DeSilva MN, et al. (2015). Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles. Int J Nanomedicine 10:1953–60.
  • Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. (2006). Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:619–27.
  • Iijima S. (1991). Helical microtubules of graphitic carbon. Nature 354:56–8.
  • Robinson JT, Welsher K, Tabakman SM, et al. (2010). High performance in vivo near-IR (>1  μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 3:779–93.
  • Gannon CJ, Cherukuri P, Yakobson BI, et al. (2007). Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110:2654–65.
  • Burke A, Ding X, Singh R, et al. (2009). Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci 106:12897–902.
  • Al-Hakami SM, Khalil AB, Laoui T, et al. (2013). Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation, fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorg Chem Appl 2013:e458943.
  • Levi-Polyachenko N, Young C, MacNeill C, et al. (2014). Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes. Int J Hyperth 30:490–501.
  • Mocan L, Ilie I, Tabaran FA, et al. (2016). Selective laser ablation of methicillin-resistant Staphylococcus aureus with IgG functionalized multi-walled carbon nanotubes. J Biomed Nanotechnol 12:781–8.
  • Dennis CL, Ivkov R. (2013). Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia 29:715–29.
  • Hu Y, Du A. (2009). The core–shell separation of ferromagnetic nanoparticles with strong surface anisotropy. J Nanosci Nanotechnol 9:5829–33.
  • Noh S, Na W, Jang J, et al. (2012). Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12:3716–21.
  • Kumar CSSR, Mohammad F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808.
  • Krishnan S, Diagaradjane P, Cho SH. (2010). Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperthermia 26:775–89.
  • Gonzales-Weimuller M, Zeisberger M, Krishnan KM. (2009). Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321:1947–50.
  • Kim M-H, Yamayoshi I, Mathew S, et al. (2013). Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann Biomed Eng 41:598–609.
  • Rodrigues D, Bañobre-López M, Espiña B, et al. (2013). Effect of magnetic hyperthermia on the structure of biofilm and cellular viability of a food spoilage bacterium. Biofouling 29:1225.
  • Chudzik B, Miaskowski A, Surowiec Z, et al. (2016). Effectiveness of magnetic fluid hyperthermia against Candida albicans cells. Int J Hyperthermia 32:842–57.
  • Yu TJ, Li PH, Tseng TW, Chen YC. (2011). Multifunctional Fe3O4/alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria. Nanomedicine 6:1353–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.