1,066
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Target visualisation and microwave hyperthermia monitoring using nanoparticle-enhanced transmission ultrasound (NETUS)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 773-785 | Received 29 May 2017, Accepted 07 Sep 2017, Published online: 24 Oct 2017

References

  • Bitton RR, Daniel BL, Pauly KB. (2013). Breast ablation: breast carcinoma, fibroadenomas. Interventional radiology techniques in ablation. London: Springer, 73–95.
  • Maluta S, Kolff MW. (2015). Role of hyperthermia in breast cancer locoregional recurrence: a review. Breast Care 10:408–12.
  • Zagar TM, Vujaskovic Z, Formenti S, et al. (2014). Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int J Hyperthermia 30:285–94.
  • Datta NR, Puric E, Klingbiel D, et al. (2016). Hyperthermia and radiation therapy in locoregional recurrent breast cancers: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys 94:1073–87.
  • van der Zee J, van der Holt B, Rietveld P, et al. (1999). Reirradiation combined with hyperthermia in recurrent breast cancer results in a worthwhile local palliation. Br J Cancer 79:483.
  • Linthorst M, Baaijens M, Wiggenraad R, et al. (2015). Local control rate after the combination of re-irradiation and hyperthermia for irresectable recurrent breast cancer: results in 248 patients. Radiother Oncol 117:217–22.
  • Rieke V, Butts Pauly K. (2008). MR thermometry. J Magn Reson Imaging 27:376–90.
  • Vitkin I, Moriarty J, Peters R, et al. (1997). Magnetic resonance imaging of temperature changes during interstitial microwave heating: a phantom study. Med Phys 24:269–77.
  • Lewis MA, Staruch RM, Chopra R. (2015). Thermometry and ablation monitoring with ultrasound. Int J Hyperthermia 31:163–81.
  • Weiss N, Sosna J, Goldberg SN, Azhari H. (2014). Non-invasive temperature monitoring and hyperthermic injury onset detection using X-ray CT during HIFU thermal treatment in ex vivo fatty tissue. Int J Hyperthermia 30:119–25.
  • Wang CY, Geng X, Yeh TS, et al. (2013). Monitoring radiofrequency ablation with ultrasound Nakagami imaging. Med Phys 40:072901-1–12.
  • Subramanian S, Rudich SM, Alqadah A, et al. (2014). In vivo thermal ablation monitoring using ultrasound echo decorrelation imaging. Ultrasound Med Biol 40:102–14.
  • Gudur MSR, Kumon RE, Zhou Y, Deng CX. (2012). High-frequency rapid B-mode ultrasound imaging for real-time monitoring of lesion formation and gas body activity during high-intensity focused ultrasound ablation. IEEE Trans Ultrason Ferroelect Freq Control 59:1687–99.
  • Pouch AM, Cary TW, Schultz SM, Sehgal CM. (2010). In vivo noninvasive temperature measurement by B‐mode ultrasound imaging. J Ultrasound Med 29:1595–606.
  • Curiel L, Chopra R, Hynynen K. (2009). In vivo monitoring of focused ultrasound surgery using local harmonic motion. Ultrasound Med Biol 35:65–78.
  • Arnal B, Pernot M, Tanter M. (2011). Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry. IEEE Trans Ultrason Ferroelect Freq Control 58:369–78.
  • Foiret J, Ferrara KW. (2015). Spatial and temporal control of hyperthermia using real time ultrasonic thermal strain imaging with motion compensation, phantom study. PLoS One 10:e0134938.
  • Zhang S, Zhou F, Wan M, et al. (2012). Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions. J Acoust Soc Am 131:4836–44.
  • Azhari H. (2012). Feasibility study of ultrasonic computed tomography–guided high-intensity focused ultrasound. Ultrasound Med Biol 38:619–25.
  • Ruiter NV, Zapf M, Hopp T, et al. (2012). 3D ultrasound computer tomography of the breast: a new era? Eur J Radiol 81:S133–S4.
  • Li C, Duric N, Littrup P, Huang L. (2009). In vivo breast sound-speed imaging with ultrasound tomography. Ultrasound Med Biol 35:1615–28.
  • Duric N, Littrup P, Babkin A, et al. (2005). Development of ultrasound tomography for breast imaging: technical assessment. Med Phys 32:1375–86.
  • Azhari H, Sazbon D. (1999). Volumetric imaging with ultrasonic spiral CT 1. Radiology 212:270–5.
  • Bamber JC, Hill C. (1979). Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultrasound Med Biol 5:149–57.
  • Hopp T, Ruiter NV, Duric N. (2012). Breast tissue characterization by sound speed: correlation with mammograms using a 2d/3d image registration. IEEE International Ultrasonics Symposium (IUS), 2012. IEEE; 1–4
  • Hahn MA, Singh AK, Sharma P, et al. (2011). Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 399:3–27.
  • Qiao R, Yang C, Gao M. (2009). Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–93.
  • Perlman O, Weitz IS, Azhari H. (2015). Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys Med Biol 60:5767.
  • Perlman O, Azhari H. (2017). Ultrasonic computed tomography imaging of iron oxide nanoparticles. Phys Med Biol 62:825.
  • Iyer AK, Khaled G, Fang J, Maeda H. (2006). Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–18.
  • García-Jimeno S, Ortega-Palacios R, Cepeda-Rubio MFJ, et al. (2012). Improved thermal ablation efficacy using magnetic nanoparticles: a study in tumor phantoms. Prog Electromagn Res 128:229–48.
  • Kim K, Seo T, Sim K, Kwon Y. (2016). Magnetic nanoparticle-assisted microwave hyperthermia using an active integrated heat applicator. IEEE Trans Microw Theory Techn 64:2184–97.
  • Miller NR, Bamber JC, Meaney PM. (2002). Fundamental limitations of noninvasive temperature imaging by means of ultrasound echo strain estimation. Ultrasound Med Biol 28:1319–33.
  • Datta N, Ordóñez SG, Gaipl U, et al. (2015). Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev 41:742–53.
  • Rothstein T, Gaitini D, Gallimidi Z, Azhari H. (2010). Investigation of acoustic changes resulting from contrast enhancement in through-transmission ultrasonic imaging. Ultrasound Med Biol 36:1395–404.
  • Weitz IS, Maoz M, Panitz D, et al. (2015). Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against Candida albicans. J Nanopart Res 17:342.
  • Zhu L, Zhou Z, Mao H, Yang L. (2017). Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine 12:73–87.
  • Sandhu GYS, Li C, Roy O, et al. (2016). Frequency-domain ultrasound waveform tomography breast attenuation imaging. Proc SPIE 9790:97900C1–12.
  • Sapareto SA, Dewey WC. (1984). Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800.
  • Crowe L, Tobalem F, Gramoun A, et al. (2012). Improved dynamic response assessment for intra-articular injected iron oxide nanoparticles. Magn Reson Med 68:1544–52.
  • Park WKC, Maxwell AWP, Frank VE, et al. (2017). The in vivo performance of a novel thermal accelerant agent used for augmentation of microwave energy delivery within biologic tissues during image-guided thermal ablation: a porcine study. Int J Hyperthermia [Epub ahead of print]. doi: 10.1080/02656736.2017.1317367
  • Kehagias DT, Gouliamos AD, Smyrniotis V, Vlahos LJ. (2001). Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A). J Magn Reson Imaging 14:595–601.
  • Brigger I, Dubernet C, Couvreur P. (2002). Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–51.
  • van den Bosch M, Daniel B, Rieke V, et al. (2008). MRI‐guided radiofrequency ablation of breast cancer: preliminary clinical experience. J Magn Reson Imaging 27:204–8.
  • Pinkerton J. (1949). The absorption of ultrasonic waves in liquids and its relation to molecular constitution. Proc Phys Soc Sect B 62:129.
  • Arthur R, Straube W, Trobaugh J, Moros E. (2005). Non-invasive estimation of hyperthermia temperatures with ultrasound. Int J Hyperthermia 21:589–600.
  • Gardner RA, Vargas HI, Block JB, et al. (2002). Focused microwave phased array thermotherapy for primary breast cancer. Ann Surg Oncol 9:326–32.
  • Cetas TC. (1984). Will thermometric tomography become practical for hyperthermia treatment monitoring? Cancer Res 44:4805s–8s.
  • Chu W, Staruch RM, Pichardo S, et al. (2016). Magnetic resonance–guided high-intensity focused ultrasound hyperthermia for recurrent rectal cancer: MR thermometry evaluation and preclinical validation. Int J Radiat Oncol Biol Phys 95:1259–67.
  • Duric N, Littrup P, Poulo L, et al. (2007). Detection of breast cancer with ultrasound tomography: first results with the omputed Ultrasound Risk Evaluation (CURE) prototype. Med Phys 34:773–85.
  • Laha D, Pramanik A, Chattopadhyay S, et al. (2015). Folic acid modified copper oxide nanoparticles for targeted delivery in in vitro and in vivo systems. RSC Adv 5:68169–78.
  • Duric N, Littrup P, Schmidt S, et al. (2013). Breast imaging with the SoftVue imaging system: first results. Proc SPIE 8675:86750K. doi: 10.1117/12.2002513

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.