1,441
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Activation of hypoxia-inducible factor-1α in rat brain after perinatal anoxia: role of body temperature

, , , &
Pages 824-833 | Received 12 Jul 2017, Accepted 24 Sep 2017, Published online: 23 Oct 2017

References

  • Dixon BJ, Reis C, Ho WM, et al. (2015). Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. Int J Mol Sci 16:22368–401.
  • Golan MH, Mane R, Molczadzki G, et al. (2009). Impaired migration signaling in the hippocampus following prenatal hypoxia. Neuropharmacology 57:511–22.
  • Nyakas C, Buwalda B, Luiten PG. (1996). Hypoxia and brain development. Prog Neurobiol 49:1–51.
  • Rodricks CL, Gibbs ME, Castillo-Melendez M, et al. (2010). The effect of hypoxia on the functional and structural development of the chick brain. Int J Dev Neurosci 28:343–50.
  • Mañeru C, Serra-Grabulosa JM, Junqué C, et al. (2003). Residual hippocampal atrophy in asphyxiated term neonates. J Neuroimaging 13:68–74.
  • Okereafor A, Allsop J, Counsell SJ, et al. (2008). Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 121:906–14.
  • Semenza GL. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Cell Dev Biol 15:551–78.
  • Greer SN, Metcalf JL, Wang Y, et al. (2012). The updated biology of hypoxia-inducible factor. Embo J 31:2448–60.
  • Trollmann R, Gassmann M. (2009). The role of hypoxia-inducible transcription factors in the hypoxic neonatal brain. Brain Dev 31:503–9.
  • Trollmann R, Strasser K, Keller S, et al. (2008). Placental HIFs as markers of cerebral hypoxic distress in fetal mice. Am J Physiol - Regul Integr Comp Physiol 295:1973–81.
  • Zhang P, Yao Q, Lu L, et al. (2014). Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep 6:1110–21.
  • Fan X, Heijnen CJ, van der Kooij MA, et al. (2009). The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res Rev 62:99–108.
  • Liu L, Cash TP, Jones RG, et al. (2006). Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21:521–31.
  • Chen W, Ostrowski RP, Obenaus A, et al. (2009). Prodeath or prosurvival: two facets of hypoxia inducible factor-1 in perinatal brain injury. Exp Neurol 216:7–15.
  • Fandrey J, Gorr TA, Gassmann M. (2006). Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res 71:642–51.
  • Kiriakidis S, Esteban MA, Maxwell PH. (2007). Genetic insights into the hypoxia-inducible factor (HIF) pathway. Adv Enzyme Regul 47:288–306.
  • Semenza GL. (2000). HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–80.
  • Lemus-Varela ML, Flores-Soto ME, Cervantes-Munguía R, et al. (2010). Expression of HIF-1α, VEGF and EPO in peripheral blood from patients with two cardiac abnormalities associated with hypoxia. Clin Biochem 43:234–9.
  • van der Kooij MA, Groenendaal F, Kavelaars A, et al. (2008). Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res Rev 59:22–33.
  • Mu D, Jiang X, Sheldon RA, et al. (2003). Regulation of hypoxia-inducible factor 1α and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis 14:524–34.
  • Rogalska J, Caputa M. (2005). Spontaneously reduced body temperature and gasping ability as a mechanism of extreme tolerance to asphyxia in neonatal rats. J Therm Biol 30:360–9.
  • Laptook AR, Corbett RJT. (2002). The effects of temperature on hypoxic-ischemic brain injury. Clin Perinatol 29:623–49.
  • Trescher WH, Ishiwa S, Johnston MV. (1997). Brief post-hypoxic-ischemic hypothermia markedly delays neonatal brain injury. Brain Dev 19:326–38.
  • Maier CM, Sun GH, Cheng D, et al. (2002). Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression, and activity following transient focal cerebral ischemia. Neurobiol Dis 11:28–42.
  • Zhao H, Steinberg GK, Sapolsky RM. (2007). General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J Cereb Blood Flow Metab 27:1879–94.
  • Koda Y, Tsuruta R, Fujita M, et al. (2010). Moderate hypothermia suppresses jugular venous superoxide anion radical, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats. Brain Res 1311:197–205.
  • Bertin R, De Marco F, Mouroux I, et al. (1993). Postnatal development of nonshivering thermogenesis in rats: effects of rearing temperature. J Dev Physiol 19:9–15.
  • Gordon CJ, Temperature regulation in laboratory rodents. New York (NY): Cambridge University Press; 1993.
  • Wood T, Osredkar D, Puchades M, et al. (2016). Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia. Sci Rep 6:23430.
  • Edwards AD, Brocklehurst P, Gunn AJ, et al. (2010). Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340:c363.
  • Azzopardi D, Strohm B, Linsell L, et al. (2012). Implementation and conduct of therapeutic hypothermia for perinatal asphyxial encephalopathy in the UK–analysis of national data. PLoS One 7:e38504.
  • Kletkiewicz H, Nowakowska A, Siejka A, et al. (2016). Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature. Int J Hyperthermia 32:211–20.
  • Kletkiewicz H, Rogalska J, Nowakowska A, et al. (2016). Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats. J Physiol Pharmacol 67:287–99.
  • Semple BD, Blomgren K, Gimlin K, et al. (2013). Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16.
  • Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54.
  • Laemmli UK. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–5.
  • Schneider CA, Rasband WS, Eliceiri KW. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–5.
  • Pfaffl MW, Horgan GW, Dempfle L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36.
  • Minamisawa H, Smith ML, Siesjö BK. (1990). The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol 28:26–33.
  • Belhadj Slimen I, Najar T, Ghram A, et al. (2014). Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. a review. Int J Hyperthermia 30:513–23.
  • Caputa M, Rogalska J, Nowakowska A. (2001). Effect of temperature on postanoxic, potentially neurotoxic changes of plasma pH and free iron level in newborn rats. Brain Res Bull 55:281–6.
  • Kletkiewicz H, Nowakowska A, Siejka A, et al. (2016). Deferoxamine improves antioxidative protection in the brain of neonatal rats: the role of anoxia and body temperature. Neurosci Lett 628:116–22.
  • Heidbreder M, Fröhlich F, Jöhren O, et al. (2003). Hypoxia rapidly activates HIF-3alpha mRNA expression. FASEB J 17:1541–3.
  • Stroka DM, Burkhardt T, Desbaillets I, et al. (2001). HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 15:2445–53.
  • Chávez JC, Agani F, Pichiule P, et al. (2000). Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol 89:1937–42.
  • Wenger RH, Kvietiko I, Rolfs A, et al. (1997). Hypoxia-inducible factor-1 alpha is regulated at the post-mRNA level. Kidney Int 51:560–3.
  • Chamboredon S, Ciais D, Desroches-Castan A, et al. (2011). Hypoxia-inducible factor-1α mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol Biol Cell 22:3366–78.
  • Belaiba RS, Bonello S, Zähringer C, et al. (2007). Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell 18:4691–7.
  • Wiener CM, Booth G, Semenza GL. (1996). In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun 225:485–8.
  • Trollmann R, Schneider J, Keller S, et al. (2008). HIF-1-regulated vasoactive systems are differentially involved in acute hypoxic stress responses of the developing brain of newborn mice and are not affected by levetiracetam. Brain Res 1199:27–36.
  • Manalo DJ, Rowan A, Lavoie T, et al. (2005). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–69.
  • Marti HH, Wenger RH, Rivas LA, et al. (1996). Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8:666–76.
  • Mu D, Chang YS, Vexler ZS, et al. (2005). Hypoxia-inducible factor 1alpha and erythropoietin upregulation with deferoxamine salvage after neonatal stroke. Exp Neurol 195:407–15.
  • Bernaudin M, Tang Y, Reilly M, et al. (2002). Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J Biol Chem 277:39728–38.
  • Sharp FR, Ran R, Lu A, et al. (2004). Hypoxic preconditioning protects against ischemic brain injury. NeuroRx 1:26–35.
  • Lu J, Jiang L, Zhu H, et al. (2014). Hypoxia-inducible factor-1α and erythropoietin expression in the hippocampus of neonatal rats following hypoxia-ischemia. J Nanosci Nanotechnol 14:5614–19.
  • Yeo J, Cho S, Kim S, Park W. (2008). Contribution of HIF-1alpha or HIF-2alpha to erythropoietin expression: in vivo evidence based on chromatin immunoprecipitation. Ann Hematol 87:11–17.
  • Rogalska J, Danielisova V, Caputa M. (2006). Effect of neonatal body temperature on postanoxic, potentially neurotoxic iron accumulation in the rat brain. Neurosci Lett 393:249–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.