3,243
Views
22
CrossRef citations to date
0
Altmetric
Review

A review of immune therapy in cancer and a question: can thermal therapy increase tumor response?

Pages 840-852 | Received 31 May 2017, Accepted 30 Sep 2017, Published online: 03 Nov 2017

References

  • Topalian SL, Taube JM, Anders RA, Pardoll DM. (2016). Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–87.
  • Burstein HJ, Krilov L, Aragon-Ching JB, et al. (2017). Clinical cancer advances 2017: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol 35:1341–67.
  • Galon J, Angell HK, Bedognetti D, Marincola FM. (2013). The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39:11–26.
  • Galon J, Costes A, Sanchez-Cabo F, et al. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–4.
  • McCarthy EF. (2006). The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–8.
  • Nauts HC, Fowler GA, Bogatko FH. (1953). A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley's mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand Suppl 276:1–103.
  • Coley WB. (1910). The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the streptococcus erysipelas and the bacillus prodigiosus). Proc R Soc Med 3(Surg Sect):1–48.
  • Morales A. (2017). BCG: a throwback from the stone age of vaccines opened the path for bladder cancer immunotherapy. Can J Urol 24:8788–93.
  • Sivan A, Corrales L, Hubert N, et al. (2015). Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–9.
  • Vetizou M, Pitt JM, Daillere R, et al. (2015). Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–84.
  • Viaud S, Saccheri F, Mignot G, et al. (2013). The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–6.
  • Yang T, Owen JL, Lightfoot YL, et al. (2013). Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol Med 19:714–25.
  • Taur Y, Jenq RR, Ubeda C, et al. (2015). Role of intestinal microbiota in transplantation outcomes. Best Pract Res Clin Haematol 28:155–61.
  • Whangbo J, Ritz J, Bhatt A. (2016). Antibiotic-mediated modification of the intestinal microbiome in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 52:183–90.
  • Mathewson ND, Jenq R, Mathew AV, et al. (2016). Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol 17:505–13.
  • Delorme EJ, Alexander P. (1964). Treatment of primary fibrosarcoma in the rat with immune lymphocytes. Lancet 2:117–20.
  • Lotze MT, Matory YL, Ettinghausen SE, et al. (1985). In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J Immunol 135:2865–75.
  • Seipp CA, Simpson C, Rosenberg SA. (1986). Clinical trials with IL-2. Oncol Nurs Forum 13:25–9.
  • Rosenberg SA. (2014). IL-2: the first effective immunotherapy for human cancer. J Immunol 192:5451–8.
  • Rosenberg SA, Lotze MT, Yang JC, et al. (1989). Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 210:474–84.
  • Chang AE, Rosenberg SA. (1989). Overview of interleukin-2 as an immunotherapeutic agent. Semin Surg Oncol 5:385–90.
  • zur Hausen H. (2001). Oncogenic DNA viruses. Oncogene 20:7820–3.
  • Chen DS, Mellman I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10.
  • Mellman I, Coukos G, Dranoff G. (2011). Cancer immunotherapy comes of age. Nature 480:480–9.
  • Thor Straten P, Garrido F. (2016). Targetless T cells in cancer immunotherapy. J Immunother Cancer 4:23.
  • Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. (2011). Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–71.
  • Garrido F, Aptsiauri N, Doorduijn EM, et al. (2016). The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol 39:44–51.
  • Klein J. (1986). Seeds of time: fifty years ago Peter A. Gorer discovered the H-2 complex. Immunogenetics 24:331–8.
  • Upadhyay R, Hammerich L, Peng P, et al. (2015). Lymphoma: immune evasion strategies. Cancers (Basel) 7:736–62.
  • Schlober HA. (2014). Overcoming tumor: mediated immunosuppression. Immunotherapy 6:973–88.
  • Umansky V, Blattner C, Gebhardt C, Utikal J. (2016). The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4:E36.
  • Conrad C, Gregorio J, Wang YH, et al. (2012). Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3(+) T-regulatory cells. Cancer Res 72:5240–9.
  • Conrad C, Gilliet M. (2013). Plasmacytoid dendritic cells and regulatory T cells in the tumor microenvironment: a dangerous liaison. Oncoimmunology 2:e23887.
  • Umansky V, Blattner C, Fleming V, et al. (2016). Myeloid-derived suppressor cells and tumor escape from immune surveillance. Semin Immunopathol 39:295–305.
  • Khan Z, Marshall JF. (2016). The role of integrins in TGFβ activation in the tumour stroma. Cell Tissue Res 365:657–73.
  • Lim H, Moon A. (2016). Inflammatory fibroblasts in cancer. Arch Pharm Res 39:1021–31.
  • Amezquita RA, Kaech SM. (2017). Immunology: the chronicles of T-cell exhaustion. Nature 543:190–1.
  • Ricciardi M, Zanotto M, Malpeli G, et al. (2015). Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells. Br J Cancer 112:1067–75.
  • Topalian SL, Drake CG, Pardoll DM. (2012). Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–12.
  • Xia B, Herbst RS. (2016). Immune checkpoint therapy for non-small-cell lung cancer: an update. Immunotherapy 8:279–98.
  • Alegre ML, Frauwirth KA, Thompson CB. (2001). T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 1:220–8.
  • Krummel MF, Sullivan TJ, Allison JP. (1996). Superantigen responses and co-stimulation: CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo. Int Immunol 8:519–23.
  • Krummel MF, Allison JP. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–65.
  • Allison JP, Krummel MF. (1995). The Yin and Yang of T cell costimulation. Science 270:932–3.
  • Lizee G, Cantu MA, Hwu P. (2007). Less yin, more yang: confronting the barriers to cancer immunotherapy. Clin Cancer Res 13:5250–5.
  • Sharma P, Allison JP. (2015). The future of immune checkpoint therapy. Science 348:56–61.
  • Sharma P, Wagner K, Wolchok JD, Allison JP. (2011). Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11:805–12.
  • Leach DR, Krummel MF, Allison JP. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–6.
  • Weigelin B, Krause M, Friedl P. (2011). Cytotoxic T lymphocyte migration and effector function in the tumor microenvironment. Immunol Lett 138:19–21.
  • Eisenhauer EA, Therasse P, Bogaerts J, et al. (2009). New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–47.
  • von Minckwitz G, Sinn HP, Raab G, et al. (2008). Clinical response after two cycles compared to HER2, Ki-67, p53, and bcl-2 in independently predicting a pathological complete response after preoperative chemotherapy in patients with operable carcinoma of the breast. Breast Cancer Res 10:R30.
  • Wolchok JD, Hoos A, O'Day S, et al. (2009). Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–20.
  • Seymour L, Bogaerts J, Perrone A, et al. (2017). iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol 18:e143–52.
  • Allison JP. (2015). Immune checkpoint blockade in cancer therapy: the 2015 Lasker-DeBakey clinical medical research award. JAMA 314:1113–14.
  • Greenwald RJ, Freeman GJ, Sharpe AH. (2005). The B7 family revisited. Annu Rev Immunol 23:515–48.
  • Tumeh PC, Harview CL, Yearley JH, et al. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–71.
  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH. (2008). PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704.
  • Tivol EA, Borriello F, Schweitzer AN, et al. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–7.
  • Chikuma S. (2016). Basics of PD-1 in self-tolerance, infection, and cancer immunity. Int J Clin Oncol 21:448–55.
  • Mittendorf EA, Philips AV, Meric-Bernstam F, et al. (2014). PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2:361–70.
  • Dongre A, Rashidian M, Reinhardt F, et al. (2017). Epithelial-to-mesenchymal Transition contributes to Immunosuppression in Breast Carcinomas. Cancer Res 77:3982–9.
  • Lafuente-Sanchis A, Zuniga A, Estors M, et al. (2016). Association of PD-1, PD-L1, and CTLA-4 gene expression and clinicopathologic characteristics in patients with non-small-cell lung cancer. Clin Lung Cancer 18:e109–16.
  • Neal J. (2017). Immunotherapy, molecular testing propel dramatic changes in lun cancer care. Oncology Live On line, March, 2017.
  • Ferris RL, Blumenschein G Jr., Fayette J, et al. (2016). Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–67.
  • Garcia-Teijido P, Cabal ML, Fernandez IP, Perez YF. (2016). Tumor-infiltrating lymphocytes in triple negative breast cancer: the future of immune targeting. Clin Med Insights Oncol 10(Suppl 1):31–9.
  • Nanda R, Chow LQ, Dees EC, et al. (2016). Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol 34:2460–7.
  • CheckMate 204. Chicago: The American Society of Clinical Oncology (ASCO); 2017.
  • Matsuki E, Younes A. (2016). Checkpoint inhibitors and other immune therapies for Hodgkin and Non-Hodgkin Lymphoma. Curr Treat Options Oncol 17:31–48.
  • Antonia SJ, Lopez-Martin JA, Bendell J, et al. (2016). Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol 17:883–95.
  • Hamanishi J, Mandai M, Ikeda T, et al. (2015). Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol 33:4015–22.
  • Chen L, editor. CD38, a new checkpoint inhibitor. ASCO Clinical Immune Oncology Symposium; 2017.
  • Kourie HR, Awada G, Awada AH. (2015). Learning from the “tsunami” of immune checkpoint inhibitors in 2015. Crit Rev Oncol Hematol 101:213–20.
  • Topalian SL, Sznol M, McDermott DF, et al. (2014). Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–30.
  • Topalian SL, Hodi FS, Brahmer JR, et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–54.
  • Topalian SL, Wolchok JD, Chan TA, et al. (2015). Immunotherapy: the path to win the war on cancer? Cell 161:185–6.
  • Tian T, Olson S, Whitacre JM, Harding A. (2011). The origins of cancer robustness and evolvability. Integr Biol (Camb) 3:17–30.
  • Rizvi NA, Hellmann MD, Snyder A, et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–8.
  • Chow LQ, Haddad R, Gupta S, et al. (2016). Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol 34:3838–45.
  • Seiwert TY, Burtness B, Mehra R, et al. (2016). Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 17:956–65.
  • Le DT, Uram JN, Wang H, et al. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–20.
  • Dudley JC, Lin MT, Le DT, Eshleman JR. (2016). Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res 22:813–20.
  • Kanaan H, Kourie HR, Awada AH. (2016). Are virus-induced cancers more sensitive to checkpoint inhibitors? Future Oncol 12:2665–8.
  • Schuren AB, Costa AI, Wiertz EJ. (2016). Recent advances in viral evasion of the MHC Class I processing pathway. Curr Opin Immunol 40:43–50.
  • Larrubia JR, Moreno CE, Lokhande MU, et al. (2014). Adaptive immune response during hepatitis C virus infection. World J Gastroenterol 20:3418–30.
  • Ma J, Li J, Hao Y, et al. (2017). Differentiated tumor immune microenvironment of Epstein-Barr virus-associated and negative gastric cancer: implication in prognosis and immunotherapy. Oncotarget 8:67094–103.
  • Li Z, Li N, Li F, et al. (2016). Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma. Medicine (Baltimore) 95:e5749.
  • Borcoman E, Le Tourneau C. (2017). Pembrolizumab in cervical cancer: latest evidence and clinical usefulness. Ther Adv Med Oncol 9:431–9.
  • Stevanovic S, Draper LM, Langhan MM, et al. (2015). Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol 33:1543–50.
  • Martin D, Rodel F, Balermpas P, et al. (2017). The immune microenvironment and HPV in anal cancer: rationale to complement chemoradiation with immunotherapy. Biochim Biophys Acta 1868:221–30.
  • Fountzilas C, Patel S, Mahalingam D. (2017). Review: oncolytic virotherapy, updates and future directions. Oncotarget. [Epub ahead of print]. doi:10.18632/oncotarget.18309.
  • Oguejiofor K, Galletta-Williams H, Dovedi SJ, et al. (2017). Distinct patterns of infiltrating CD8+ T cells in HPV + and CD68 macrophages in HPV- oropharyngeal squamous cell carcinomas are associated with better clinical outcome but PD-L1 expression is not prognostic. Oncotarget 8:14416–27.
  • Ferris RL, Galon J. (2016). Additional support for the introduction of immune cell quantification in colorectal cancer classification. J Natl Cancer Inst 108:33.
  • Bindea G, Mlecnik B, Tosolini M, et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39:782–95.
  • Tsutsumi S, Saeki H, Nakashima Y, et al. (2017). PD-L1 expression at tumor invasive front is associated with EMT and poor prognosis in esophageal squamous cell carcinoma. Cancer Sci 108:1119–27.
  • Fridman WH, Pages F, Sautes-Fridman C, Galon J. (2012). The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306.
  • Friedl P, Weigelin B. (2014). A Swiss army knife for CTLs. Immunity 41:873–5.
  • Prakash MD, Munoz MA, Jain R, et al. (2014). Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling. Immunity 41:960–72.
  • Tran E, Turcotte S, Gros A, et al. (2014). Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–5.
  • Rosenberg SA, Yang JC, Sherry RM, et al. (2011). Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–7.
  • Sell S. (2017). Cancer immunotherapy: breakthrough or “deja vu, all over again”? Tumour Biol 39:1010428317707764.
  • Rosenberg SA, Restifo NP. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–8.
  • Rosenberg SA, Tran E, Robbins PF. (2017). T-Cell transfer therapy targeting mutant KRAS. N Engl J Med 376:e11.
  • Tran E, Robbins PF, Lu YC, et al. (2016). T-Cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375:2255–62.
  • Jin J, Sabatino M, Somerville R, et al. (2012). Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment. J Immunother 35:283–92.
  • Li H, Zhao Y. (2017). Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell 8:573–89.
  • Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. (2016). Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 3:16011.
  • Geyer MB, Brentjens RJ. (2016). Review: current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy 18:1393–409.
  • Ahmed N, Brawley VS, Hegde M, et al. (2015). Human epidermal growth factor receptor 2 (HER2): specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 33:1688–96.
  • Drewes JL, Housseau F, Sears CL. (2016). Sporadic colorectal cancer: microbial contributors to disease prevention, development and therapy. Br J Cancer 115:273–80.
  • Wroblewski LE, Peek RM, Jr, Coburn LA. (2016). The role of the microbiome in gastrointestinal cancer. Gastroenterol Clin North Am 45:543–56.
  • Pope JL, Tomkovich S, Yang Y, Jobin C. (2016). Microbiota as a mediator of cancer progression and therapy. Transl Res 179:139–54.
  • Kim D, Zeng MY, Nunez G. (2017). The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med 49:e339.
  • Ursell LK, Metcalf JL, Parfrey LW, Knight R. (2012). Defining the human microbiome. Nutr Rev 70(Suppl 1):S38–S44.
  • Pevsner-Fischer M, Tuganbaev T, Meijer M, et al. (2016). Role of the microbiome in non-gastrointestinal cancers. World J Clin Oncol 7:200–13.
  • Nelson MH, Diven MA, Huff LW, Paulos CM. (2015). Harnessing the microbiome to enhance cancer immunotherapy. J Immunol Res 2015:368736.
  • Gill SR, Pop M, Deboy RT, et al. (2006). Metagenomic analysis of the human distal gut microbiome. Science 312:1355–9.
  • Lynch SV, Pedersen O. (2016). The human intestinal microbiome in health and disease. N Engl J Med 375:2369–79.
  • Mancabelli L, Milani C, Lugli GA, et al. (2017). Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ Microbiol 19:1379–90.
  • Hooper LV, Littman DR, Macpherson AJ. (2012). Interactions between the microbiota and the immune system. Science 336:1268–73.
  • Berg RD. (1996). The indigenous gastrointestinal microflora. Trends Microbiol 4:430–5.
  • Spasova DS, Surh CD. (2014). Blowing on embers: commensal microbiota and our immune system. Front Immunol 5:318.
  • Snyder A, Pamer E, Wolchok J. (2015). Immunotherapy. Could microbial therapy boost cancer immunotherapy? Science 350:1031–2.
  • Zaura E, Brandt BW, Teixeira de Mattos MJ, et al. (2015). Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. MBio 6:e01693-15.
  • Cao Y, Wu K, Mehta R, et al. (2017). Long-term use of antibiotics and risk of colorectal adenoma. Gut [Epub ahead of print]. doi:10.1136/gutjnl-2016-313413.
  • Djkstra KK. (2016). Genomics- and transcriptomics-based patient selection for cancer treatment with immune checkpoint inhibitors: a review. JAMA Oncol 2:1490–5.
  • Reck M, Rodriguez-Abreu D, Robinson AG, et al. (2016). Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1813–33.
  • Vaughn LK, Bernheim HA, Kluger MJ. (1974). Fever in the lizard Dipsosaurus dorsalis. Nature 252:473–4.
  • Reynolds WW, Casterlin ME, Covert JB. (1976). Behavioural fever in teleost fishes. Nature 259:41–2.
  • Kluger MJ. (1978). The evolution and adaptive value of fever. Am Sci 66:38–43.
  • Kluger MJ. (1986). Is fever beneficial? Yale J Biol Med 59:89–95.
  • Evans SS, Repasky EA, Fisher DT. (2015). Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 15:335–49.
  • Lee CT, Kokolus KM, Leigh ND, et al. (2015). Defining immunological impact and therapeutic benefit of mild heating in a murine model of arthritis. PLoS One 10:e0120327.
  • Repasky EA, Evans SS, Dewhirst MW. (2013). Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol Res 1:210–6.
  • Burd R, Dziedzic TS, Xu Y, et al. (1998). Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia. J Cell Physiol 177:137–47.
  • Song CW, Park HJ, Lee CK, Griffin R. (2005). Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperthermia 21:761–7.
  • Werthmoller N, Frey B, Ruckert M, et al. (2016). Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells in vitro and in vivo. Int J Hyperthermia 32:23–30.
  • Pritchard MT, Ostberg JR, Evans SS, et al. (2004). Protocols for simulating the thermal component of fever: preclinical and clinical experience. Methods 32:54–62.
  • Rowe RW, Strebel FR, Proett JM, et al. (2010). Fever-range whole body thermotherapy combined with oxaliplatin: a curative regimen in a pre-clinical breast cancer model. Int J Hyperthermia 26:565–76.
  • Mikucki ME, Fisher DT, Ku AW, et al. (2013). Preconditioning thermal therapy: flipping the switch on IL-6 for anti-tumour immunity. Int J Hyperthermia 29:464–73.
  • Mace TA, Zhong L, Kilpatrick C, et al. (2011). Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. J Leukoc Biol 90:951–62.
  • Ostberg JR, Repasky EA. (2006). Emerging evidence indicates that physiologically relevant thermal stress regulates dendritic cell function. Cancer Immunol Immunother 55:292–8.
  • Multhoff G, Habl G, Combs SE. (2016). Rationale of hyperthermia for radio(chemo)therapy and immune responses in patients with bladder cancer: biological concepts, clinical data, interdisciplinary treatment decisions and biological tumour imaging. Int J Hyperthermia 32:455–63.
  • Chen Q, Fisher DT, Kucinska SA, et al. (2006). Dynamic control of lymphocyte trafficking by fever-range thermal stress. Cancer Immunol Immunother 55:299–311.
  • Ostberg JR, Kabingu E, Repasky EA. (2003). Thermal regulation of dendritic cell activation and migration from skin explants. Int J Hyperthermia 19:520–33.
  • Bastianpillai C, Petrides N, Shah T, et al. (2015). Harnessing the immunomodulatory effect of thermal and non-thermal ablative therapies for cancer treatment. Tumour Biol 36:9137–46.
  • Toraya-Brown S, Fiering S. (2014). Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia 30:531–9.
  • Dewhirst MW, Lee CT, Ashcraft KA. (2016). The future of biology in driving the field of hyperthermia. Int J Hyperthermia 32:4–13.
  • Mauri G, Sconfienza LM, Pescatori LC, et al. (2017). Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: a systematic review and meta-analysis. Eur Radiol 27:3199–210.
  • Facciorusso A, Serviddio G, Muscatiello N. (2016). Local ablative treatments for hepatocellular carcinoma: an updated review. World J Gastrointest Pharmacol Ther 7:477–89.
  • Ringe KI, Panzica M, von Falck C. (2016). Thermoablation of bone tumors. Rofo 188:539–50.
  • Copelan A, Hartman J, Chehab M, Venkatesan AM. (2015). High-intensity focused ultrasound: current status for image-guided therapy. Semin Intervent Radiol 32:398–415.
  • Huisman M, ter Haar G, Napoli A, et al. (2015). International consensus on use of focused ultrasound for painful bone metastases: current status and future directions. Int J Hyperthermia 31:251–9.
  • de Baere T, Tselikas L, Gravel G, Deschamps F. (2017). Lung ablation: best practice/results/response assessment/role alongside other ablative therapies. Clin Radiol 72:657–64.
  • Wells SA, Wong VK, Wittmann TA, et al. (2017). Renal mass biopsy and thermal ablation: should biopsy be performed before or during the ablation procedure? Abdom Radiol (NY) 42:1773–80.
  • Wu F. (2016). Heat-based tumor ablation: role of the immune response. Adv Exp Med Biol 880:131–53.
  • Cirincione R, Di Maggio FM, Forte GI, et al. (2017). High-intensity focused ultrasound- and radiation therapy-induced immuno-modulation: comparison and potential opportunities. Ultrasound Med Biol 43:398–411.
  • van den Bijgaart RJ, Eikelenboom DC, Hoogenboom M, et al. (2017). Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol Immunother 66:247–58.
  • McArthur HL, Diab A, Page DB, et al. (2016). A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin Cancer Res 22:5729–37.
  • Keisari Y. (2017). Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablation. Front Biosci (Landmark Ed) 22:310–47.
  • Kasuya A, Ohta I, Tokura Y. (2015). Structural and immunological effects of skin cryoablation in a mouse model. PLoS One 10:e0123906.
  • Heninger E, Krueger TE, Thiede SM, et al. (2016). Inducible expression of cancer-testis antigens in human prostate cancer. Oncotarget 7:84359–74.
  • Michaud M, Martins I, Sukkurwala AQ, et al. (2011). Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–7.
  • Rizvi NA, Hellmann MD, Brahmer JR, et al. (2016). Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 34:2969–79.
  • Litterman AJ, Zellmer DM, Grinnen KL, et al. (2013). Profound impairment of adaptive immune responses by alkylating chemotherapy. J Immunol 190:6259–68.
  • Banissi C, Ghiringhelli F, Chen L, Carpentier AF. (2009). Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–34.
  • Asavaroengchai W, Kotera Y, Mule JJ. (2002). Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc Natl Acad Sci USA 99:931–6.
  • Waitz R, Solomon SB, Petre EN, et al. (2012). Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res 72:430–9.
  • Soanes WA, Ablin RJ, Gonder MJ. (1970). Remission of metastatic lesions following cryosurgery in prostatic cancer: immunologic considerations. J Urol 104:154–9.
  • Kim H, Park BK, Kim CK. (2008). Spontaneous regression of pulmonary and adrenal metastases following percutaneous radiofrequency ablation of a recurrent renal cell carcinoma. Korean J Radiol 9:470–2.
  • Formenti SC, Demaria S. (2009). Systemic effects of local radiotherapy. Lancet Oncol 10:718–26.
  • Postow MA, Callahan MK, Barker CA, et al. (2012). Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366:925–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.