2,591
Views
6
CrossRef citations to date
0
Altmetric
Articles

The effects of head-cooling on brain function during passive hyperthermia: an fMRI study

, , , , , , , , & show all
Pages 1010-1019 | Received 28 Jun 2017, Accepted 10 Oct 2017, Published online: 01 Nov 2017

References

  • Deco G, Rolls ET. (2005). Attention, short-term memory, and action selection: a unifying theory. Prog Neurobiol 76:236–56.
  • Liu K, Li B, Qian S, et al. (2015). Altered interhemispheric resting state functional connectivity during passive hyperthermia. Int J Hyperthermia 31:840–9.
  • Racinais S, Gaoua N, Grantham J. (2008). Hyperthermia impairs short-term memory and peripheral motor drive transmission. J Physiol (Lond) 586:4751–62.
  • Gaoua N, Racinais S, Grantham J, El Massioui F. (2011). Alterations in cognitive performance during passive hyperthermia are task dependent. Int J Hyperthermia 27:1–9.
  • Sun G, Li M, Yang Z, et al. (2012). Hyperthermia exposure impaired the early stage of face recognition: an ERP study. Int J Hyperthermia 28:605–20.
  • Sun G, Yang X, Jiang Q, et al. (2012). Hyperthermia impairs the executive function using the Attention Network Test. Int J Hyperthermia 28:621–6.
  • Sun G, Li L, Li M, Jiang Q. (2011). Hyperthermia impaired pre-attentive processing: an auditory MMN study. Neurosci Lett 502:94–8.
  • Rolls ET, Grabenhorst F, Parris BA. (2008). Warm pleasant feelings in the brain. Neuroimage 41:1504–13.
  • Becerra LR, Breiter HC, Stojanovic M, et al. (1999). Human brain activation under controlled thermal stimulation and fabituation to noxious heat: an fMRI study. Magn Reson Med 41:1044–57.
  • Sung EJ, Yoo SS, Yoon HW, et al. (2007). Brain activation related to affective dimension during thermal stimulation in humans: a functional magnetic resonance imaging study. Int J Neurosci 117:1011–27.
  • Simmons SE, Saxby BK, McGlone FP, Jones DA. (2008). The effect of passive heating and head cooling on perception, cardiovascular function and cognitive performance in the heat. Eur J Appl Physiol 104:271–80.
  • Mundel T, Hooper PL, Bunn SJ, Jones DA. (2006). The effects of face cooling on the prolactin response and subjective comfort during moderate passive heating in humans. Exp Physiol 91:1007–14.
  • Hocking C, Silberstein RB, Lau WM, Stough C. (2001). Evaluation of cognitive performance in the heat by functional brain imaging and psychometric testing. Comp Biochem Physiol A Mol Integr Physiol 128:719–34.
  • Traceya I, Becerrab L, Changb I, et al. (2000). Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neurosci Lett 288:159–62.
  • Rolls ET. (2013). A biased activation theory of the cognitive and attentional modulation of emotion. Front Hum Neurosci 7:74.
  • Kanosue K, Sadato N, Okada T, et al. (2002). Brain activation during whole body cooling in humans studied with functional magnetic resonance imaging. Neurosci Lett 329:157–60.
  • Katsuura T, Tomioka K, Harada H, et al. (1996). Effects of cooling portions of the head on human thermoregulatory response. Appl Human Sci 15:67–74.
  • Ross EZ, Cotter JD, Wilson L, et al. (2012). Cerebrovascular and corticomotor function during progressive passive hyperthermia in humans. J Appl Physiol (1985) 112:748–58.
  • González-Alonso J, Teller C, Andersen SL, et al. (1999). Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol (1985) 86:1032–9.
  • Kempton MJ, Ettinger U, Foster R, et al. (2011). Dehydration affects brain structure and function in healthy adolescents. Hum Brain Mapping 32:71–9.
  • Jiang Q, Yang X, Liu K, et al. (2013). Hyperthermia impaired human visual short-term memory: an fMRI study. Int J Hyperthermia 29:219–24.
  • Liu K, Sun G, Li B, et al. (2013). The impact of passive hyperthermia on human attention networks: an fMRI study. Behav Brain Res 243:220–30.
  • Zang YF, He Y, Zhu CZ, et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91.
  • Zhang HY, Wang SJ, Liu B, et al. (2010). Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology 256:598–606.
  • Sun G, Qian S, Jiang Q, et al. (2013). Hyperthermia-induced disruption of functional connectivity in the human brain network. PLoS One 8:e61157.
  • Zang Y, Jiang T, Lu Y, et al. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage 22:394–400.
  • Logothetis NK, Pauls J, Augath M, et al. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–7.
  • Yang H, Long XY, Yang Y, et al. (2007). Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 36:144–52.
  • Fox MD, Raichle ME. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–11.
  • Greicius MD, Srivastava G, Reiss AL, Menon V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–42.
  • Li F, He N, Li Y, et al. (2014). Intrinsic brain abnormalities in attention defcit hyperactivity disorder: a resting-state functional MR imaging study. Radiology 272:514–23.
  • Liu CH, Ma X, Yuan Z, et al. (2017). Decreased resting-state activity in the precuneus is associated with depressive episodes in recurrent depression. J Clin Psychiatry 78:372–82.
  • Sheline YI, Price JL, Yan Z, Mintun MA. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 107:11020–5.
  • Han Y, Wang J, Zhao Z, et al. (2011). Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage 55:287–95.
  • Qian S, Li M, Li G, et al. (2015). Environmental heat stress enhances mental fatigue during sustained attention task performing: Evidence from an ASL perfusion study. Behav Brain Res 280:6–15.
  • Raichle ME, MacLeod AM, Snyder AZ, et al. (2001). A default mode of brain function. Proc Natl Acad Sci USA 98:676–82.
  • van Buuren M, Vink M, Kahn RS. (2012). Default-mode network dysfunction and self-referential processing in healthy siblings of schizophrenia patients. Schizophr Res 142:237–43.
  • Yan C, Liu D, He Y, et al. (2009). Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS One 4:e5743.
  • Berkovich-Ohana A, Harel M, Hahamy A, et al. (2016). Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators. Neuroimage 135:125–34.
  • Buckner RL, Andrews-Hanna JR, Schacter DL. (2008). The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38.
  • Gusnard DA, Akbudak E, Shulman GL, Raichle ME. (2001). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98:4259–64.
  • Shannon BJ, Buckner RL. (2004). Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. J Neurosci 24:10084–92.
  • Uddin LQ, Kelly AM, Biswal BB, et al. (2009). Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 30:625–37.
  • Fox MD, Snyder AZ, Vincent JL, et al. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–8.
  • Esposito R, Cieri F, Chiacchiaretta P, et al. (2017). Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: comparison among young adults, healthy elders and mild cognitive impairment patients. Brain Imaging Behav [Epub ahead of print]. doi: 10.1007/s11682-017-9686-y
  • Tian L, Jiang T, Liang M, et al. (2007). Stabilities of negative correlations between blood oxygen level-dependent signals associated with sensory and motor cortices. Hum Brain Mapp 28:681–90.
  • Weissman DH, Roberts KC, Visscher KM, Woldorff MG. (2006). The neural bases of momentary lapses in attention. Nat Neurosci 9:971–8.
  • Attia M. (1984). Thermal pleasantness and temperature regulation in man. Neurosci Biobehav Rev 8:335–42.
  • Flouris AD. (2011). Functional architecture of behavioural thermoregulation. Eur J Appl Physiol 111:1–8.
  • Craig AD, Chen K, Bandy D, Reiman EM. (2000). Thermosensory activation of insular cortex. Nat Neurosci 3:184–90.
  • Hancock PA, Vasmatzidis I. (2003). Effects of heat stress on cognitive performance: the current state of knowledge. Int J Hyperthermia 19:355–72.
  • Lee JK, Koh AC, Koh SX, et al. (2014). Neck cooling and cognitive performance following exercise-induced hyperthermia. Eur J Appl Physiol 114:375–84.
  • Fransson P, Marrelec G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 42:1178–84.
  • Ferreira LK, Busatto GF. (2013). Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev 37:384–400.
  • Zald DH, Mattson DL, Pardo JV. (2002). Brain activity in ventromedial prefrontal cortex correlates with individual differences in negative affect. Proc Natl Acad Sci USA 99:2450–4.
  • Bechara A. (1997). Deciding advantageously before knowing the advantageous strategy. Science 275:1293–5.
  • Phan KL, Wager T, Taylor SF, Liberzon I. (2002). Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16:331–48.
  • Bush G, Luu P, Posner MI. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–22.
  • Posner M. (1995). Neuropsychology. Modulation by instruction . Nature 373:198–9.
  • Grabenhorst F, Rolls ET, Parris BA. (2008). From affective value to decision-making in the prefrontal cortex. Eur J Neurosci 28:1930–9.
  • Rolls ET. Emotion decision (2014). Emotion and decision-making explained: a précis. Cortex 59:185–93.
  • Kiyatkin EA. (2005). Brain hyperthermia as physiological and pathological phenomena. Brain Res Rev 50:27–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.