2,419
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Heat transfer from nanoparticles for targeted destruction of infectious organisms

ORCID Icon, ORCID Icon & ORCID Icon
Pages 157-167 | Received 29 Aug 2017, Accepted 23 Nov 2017, Published online: 02 Mar 2018

References

  • Thiesen B, Jordan A. (2008). Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24:467–74.
  • Cherukuri P, Glazer ES, Curley SA. (2010). Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62:339–45.
  • Kaur P, Aliru ML, Chadha AS, et al. (2016). Hyperthermia using nanoparticles – promises and pitfalls. Int J Hyperthermia 32:76–88.
  • Jain S, Hirst DG, O’Sullivan M. (2012). Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–13.
  • Kozissnik B, Bohorquez AC, Dobson J, et al. (2013). Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperthermia 29:706–14.
  • Anon. MagForce AG 2017. Available from: http://www.magforce.de/home.html [last accessed 25 Aug 2017].
  • Maier-Hauff K, Ulrich F, Nestler D, et al. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–24.
  • E2456-06. Terminology for nanotechnology. ASTM International; 2006.
  • Moghimi SM, Hunter AC, Murray JC. (2005). Nanomedicine: current status and future prospects. FASEB J 19:311–30.
  • Zharov VP, Mercer KE, Galitovskaya EN, et al. (2006). Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:619–27.
  • Pissuwan D, Valenzuela S, Miller CM, et al. (2007). golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalised gold nanoparticles. Nano Lett 7:3808–12.
  • Huang W-C, Tsai R-J, Chen Y-C. (2007). Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine 2:777–87.
  • Norman RS, Stone JW, Gole A, et al. (2008). Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett 8:302–6.
  • Pissuwan D, Valenzuela SM, Miller CM, et al. (2009). Destruction and control of Toxoplasma gondii tachyzoites using gold nanosphere/antibody conjugates. Small 5:1030–4.
  • Kuo WS, Chang CN, Chang YT, et al. (2009). Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem Commun 32:4853–5.
  • Thomas LA, Dekker L, Kallumadil M, et al. (2009). Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J Mater Chem 19:6529–35.
  • Kim M-H, Yamayoshi I, Mathew S, et al. (2013). Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann Biomed Eng 41:598–609.
  • Sazgarnia A, Taheri AR, Soudmand S, et al. (2013). Antiparasitic effects of gold nanoparticles with microwave radiation on promastigotes and amastigotes of Leishmania major. Int J Hyperthermia 29:79–86.
  • Levi-Polyachenko N, Young C, MacNeill C, et al. (2014). Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes. Int J Hyperthermia 30:490–501.
  • Chudzik B, Miaskowski A, Surowiec Z, et al. (2016). Effectiveness of magnetic fluid hyperthermia against Candida albicans cells. Int J Hyperthermia 32:842–57.
  • Pihl M, Bruzell E, Andersson M. (2017). Bacterial biofilm elimination using gold nanorod localised surface plasmon resonance generated heat. Mater Sci Eng C 80:54–8.
  • Kalachyova Y, Olshtrem A, Guselnikova OA, et al. (2017). Synthesis, characterization, and antimicrobial activity of near-IR photoactive functionalized gold multibranched nanoparticles. Chem Open 6:254–60.
  • Maliszewska I, Lisiak B, Popko K, et al. (2017). Enhancement of the efficacy of photodynamic inactivation of Candida albicans with the use of biogenic gold nanoparticles. Photochem Photobiol 93:1081–90.
  • Hamad-Schifferli K, Schwartz JJ, Santos AT, et al. (2002). Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415:152–5.
  • Kim D-H, Rozhkova EA, Ulasov IV, et al. (2010). Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat Mater 9:165–71.
  • Weissleder R. (2001). A clearer vision for in vivo imaging. Nat Biotechnol 19:316–7.
  • Oldenburg SJ, Averitt RD, Westcott SL, et al. (1998). Nanoengineering of optical resonances. Chem Phys Lett 288:243–7.
  • Yu Y-Y, Chang S-S, Lee C-L, et al. (1997). Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–4.
  • Jain PK, Lee KS, El-Sayed IH, et al. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–48.
  • Harris N, Ford MJ, Mulvaney P, et al. (2008). Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells. Gold Bull 41:5–14.
  • Lal S, Clare SE, Halas NJ. (2008). Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–51.
  • Gad SC, Sharp KL, Montgomery C, et al. (2012). Evaluation of the toxicity of intravenous delivery of Auroshell particles (gold-silica nanoshells). Int J Toxicol 31:584–94.
  • Norregaard K, Jørgensen JT, Simón M, et al. (2017). 18F-FDG PET/CT-based early treatment response evaluation of nanoparticle-assisted photothermal cancer therapy. PLoS One 12:e0177997.
  • Anselmo AC, Mitragotri S. (2015). A review of clinical translation of inorganic nanoparticles. AAPS J 17:1041–54.
  • Paithankar D, Hwang BH, Munavalli G, et al. (2015). Ultrasonic delivery of silica-gold nanoshells for photothermolysis of sebaceous glands in humans: nanotechnology from the bench to clinic. J Control Release 206:30–6.
  • Huang X, El-Sayed IH, Qian W, et al. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–20.
  • Ali MRK, Rahman MA, Wu Y, et al. (2017). Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc Nat Acad Sci 114:E3110–8.
  • Arnold MD, Blaber MG. (2009). Optical performance and metallic absorption in nanoplasmonic systems. Opt Express 17:3835–47.
  • Atsumi T, Jeyadevan B, Sato Y, et al. (2007). Heating efficiency of magnetite particles exposed to AC magnetic field. J Magn Magn Mater 310:2841–3.
  • Pankhurst QA, Connolly J, Jones SK, et al. (2003). Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:R167–81.
  • Périgo EA, Hemery G, Sandre O, et al. (2015). Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev 2:041302.
  • Shliomis MI, Stepanov VI. (1994). In: Coffey WT, ed. Relaxation phenomena in condensed matter. New York: Wiley.
  • Rosensweig RE. (2002). Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–4.
  • Goldenberg H, Tranter CJ. (1952). Heat flow in an infinite medium heated by a sphere. Br J Appl Phys 3:296–8.
  • Blanco-Andujar C, Ortega D, Southern P, et al. (2016). Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia. Nanomedicine 11:121–36.
  • Creixell M, Bohórquez AC, Torres-Lugo M, et al. (2011). EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5:7124–712.
  • Anon. MAGNABLATE I. MAGnetic NAnoparticle thermoaBLATion – Retention and Maintenance in the prostatE: A Phase 0 Study in Men London, U.K.: UCL; 2013. Available from: https://www.ucl.ac.uk/surgical-interventional-trials-unit/trials/prostate/Magnablate/magnablate_I [last accessed 26 Aug 2017].
  • Hu M, Hartland GV. (2002). Heat dissipation for Au particles in aqueous solution: relaxation time versus size. J Phys Chem B 106:7029–33.
  • Rabin Y. (2002). Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? Int J Hyperthermia 18:194–202.
  • Skirtach AG, Dejugnat C, Braun D, et al. (2005). The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett 5:1371–7.
  • Pustovalov VK. (2005). Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem Phys 308:103–8.
  • Lapotko D, Lukianova E, Potapnev M, et al. (2006). Method of laser activated nano-thermolysis for elimination of tumor cells. Cancer Lett 239:36–45.
  • Govorov AO, Richardson HH. (2007). Generating heat with metal nanoparticles. Nano Today 2:30–8.
  • Pissuwan D, Valenzuela SM, Killingsworth MC, et al. (2007). Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J Nanopart Res 9:1109–24.
  • Elliott AM, Stafford RJ, Schwartz J, et al. (2007). Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Med Phys 34:3102–8.
  • Suto M, Hirota Y, Mamiya H, et al. (2009). Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321:1493–6.
  • Dombrovsky LA, Timchenko V, Jackson M. (2012). Indirect heating strategy for laser induced hyperthermia: an advanced thermal mode. Int J Heat Mass Transfer 55:4688–700.
  • Dutz S, Hergt R. (2013). Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia 29:790–800.
  • Harris N, Ford MJ, Cortie MB. (2006). Optimization of plasmonic heating by gold nanospheres and nanoshells. J Phys Chem B 110:10701–7.
  • Becker M. (1986). Heat transfer. A modern approach. New York: Plenum Press.
  • Draine BT, Flatau PJ. (1994). Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–9.
  • Pitsillides CM, Joe EK, Wei X, et al. (2003). Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–32.
  • Letfullin RR, Joenathan C, George TF, et al. (2006). Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine 1:473–80.
  • Zharov VP, Galitovsky V, Viegas M. (2003). Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl Phys Lett 83:4897–9.
  • Lapotko DO, Zharov VP. (2005). Spectral evaluation of laser-induced cell damage with photothermal microscopy. Lasers Surg Med 36:22–30.
  • Stigliano RV, Shubitidze F, Petryk JD, et al. (2016). Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Int J Hyperthermia 32:735–48.
  • Turkevich J. (1985). Colloidal gold. Part I. Historical and preparative aspects, morphology and structure. Gold Bull 18:86–91.
  • Xu X, Cortie MB. (2006). Shape change and color gamut in gold nanorods, dumbbells and dog-bones. Adv Funct Mater 16:2170–6.
  • Link S, Burda C, Nikoobakht B, et al. (2000). Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–63.
  • Reddy H, Guler U, Kildishev AV, et al. (2016). Temperature-dependent optical properties of gold thin films. Opt Mater Express 6:2776–802.
  • Khlebtsov B, Zharov V, Melnikov A, et al. (2006). Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17:5167–79.
  • Nam J, Won N, Jin H, et al. (2009). pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131:13639–45.
  • Hainfeld JF. (2012). Gold nanoparticles for selective IR heating Patent US 8,323,694. 2012.
  • Hainfeld JF, Lin L, Slatkin DN, et al. (2014). Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomed: Nanotechnol Biol Med 10:1609–17.
  • Pissuwan D, Cortie CH, Valenzuela SM, et al. (2007). Gold nanosphere–antibody conjugates for hyperthermal therapeutic applications. Gold Bull 40:121–9.
  • Huang X, Jain PK, El-Sayed IH, et al. (2006). Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82:412–7.
  • Hamilton G. (1998). Investigation of the thermal properties of human and animal tissues [PhD thesis]. University of Glasgow; 1998.
  • Coffel J, Nuxoll E. (2015). Magnetic nanoparticle/polymer composites for medical implant infection control. J Mater Chem B 3:7538–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.