1,546
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Temperature-sensitive liposomal ciprofloxacin for the treatment of biofilm on infected metal implants using alternating magnetic fields

, , , , , , & ORCID Icon show all
Pages 189-200 | Received 31 Jul 2017, Accepted 22 Dec 2017, Published online: 02 Mar 2018

References

  • Tande AJ, Patel R. (2014). Prosthetic joint infection. Clin Microbiol Rev 27:302–45.
  • Anguita-Alonso P, Hanssen AD, Patel R. (2005). Prosthetic joint infection. Expert Rev Anti Infect Ther 3:797–804.
  • Kurtz SM, Lau E, Watson H, et al. (2012). Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 27:61–5.e1.
  • Chopra R, Shaikh S, Chatzinoff Y, et al. (2017). Employing high-frequency alternating magnetic fields for the non-invasive treatment of prosthetic joint infections. Sci Rep 7:7520.
  • McConoughey SJ, Howlin R, Granger JF, et al. (2014). Biofilms in periprosthetic orthopedic infections. Future Microbiol 9:987–1007.
  • Kasimanickam RK, Ranjan A, Asokan GV, et al. (2013). Prevention and treatment of biofilms by hybrid- and nanotechnologies. Int J Nanomed 8:2809–19.
  • Song Z, Borgwardt L, Høiby N, et al. (2013). Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthop Rev (Pavia) 5:14.
  • Del Pozo JL, Rouse MS, Patel R. (2008). Bioelectric effect and bacterial biofilms. A systematic review. Int J Artif Organs 31:786–95.
  • Gnanadhas DP, Elango M, Janardhanraj S, et al. (2015). Successful treatment of biofilm infections using shock waves combined with antibiotic therapy. Sci Rep 5:17440.
  • Biel MA, Photodynamic therapy of bacterial and fungal biofilm infections. In: Gomer JC, editor. Photodynamic therapy: methods and protocols. Totowa (NJ): Humana Press; 2010. p. 175–194.
  • Bandara HMHN, Nguyen D, Mogarala S, et al. (2015). Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity. Biofouling 31:443–57.
  • Richardson IP, Sturtevant R, Heung M, et al. (2016). Hemodialysis catheter heat transfer for biofilm prevention and treatment. ASAIO J 62:92–9.
  • Kim MH, Yamayoshi I, Mathew S, et al. (2013). Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann Biomed Eng 41:598–609.
  • Pavlovsky L, Sturtevant RA, Younger JG, et al. (2015). Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. Langmuir 31:2036–42.
  • O’Toole A, Ricker EB, Nuxoll E. (2015). Thermal mitigation of Pseudomonas aeruginosa biofilms. Biofouling 31:665–75.
  • Giustini AJ, Petryk AA, Cassim SM, et al. (2010). Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 1.doi: 10.1142/S1793984410000067.
  • Stauffer PR, Cetas TC, Jones RC. (1984). Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep-seated tumors. IEEE Trans Biomed Eng 31:235–51.
  • Buckley PR, Mckinley GH, Wilson TS, et al. (2006). Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng 53:2075–83.
  • Coffel J, Nuxoll E. (2015). Magnetic nanoparticle/polymer composites for medical implant infection control. J Mater Chem B 3:7538–45.
  • Staruch R, Chopra R, Hynynen K. (2011). Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia 27:156–71.
  • Staruch RM, Hynynen K, Chopra R. (2015). Hyperthermia-mediated doxorubicin release from thermosensitive liposomes using MR-HIFU: therapeutic effect in rabbit Vx2 tumours. Int J Hyperthermia 31:118–33.
  • Lokerse WJM, Kneepkens ECM, ten Hagen TLM, et al. (2016). In depth study on thermosensitive liposomes: optimizing formulations for tumor specific therapy and in vitro to in vivo relations. Biomaterials 82:138–50.
  • Yeo SY, de Smet M, Langereis S, et al. (2014). Temperature-sensitive paramagnetic liposomes for image-guided drug delivery: Mn2+ versus [Gd(HPDO3A)(H2O)]. Biochim Biophys Acta 1838:2807–16.
  • De Smet M, Heijman E, Langereis S, et al. (2011). Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 150:102–10.
  • Grüll H, Langereis S. (2012). Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release 161:317–27.
  • Needham D, Anyarambhatla G, Kong G, et al. (2000). A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 60:1197–201.
  • Needham D, Park JY, Wright AM, et al. (2013). Materials characterization of the low temperature sensitive liposome (LTSL): effects of the lipid composition (lysolipid and DSPE-PEG2000) on the thermal transition and release of doxorubicin. Faraday Discuss 161:515–34.
  • Wardlow R, Bing C, VanOsdol J, et al. (2016). Targeted antibiotic delivery using low temperature-sensitive liposomes and magnetic resonance-guided high-intensity focused ultrasound hyperthermia. Int J Hyperthermia 32:254–64.
  • Oh YK, Nix DE, Straubinger RM. (1995). Formulation and efficacy of liposome-encapsulated antibiotics for therapy of intracellular Mycobacterium avium infection. Antimicrob Agents Chemother 39:2104–11.
  • Hsieh PH, Lee MS, Hsu KY, et al. (2009). Gram-negative prosthetic joint infections: risk factors and outcome of treatment. Clin Infect Dis 49:1036–43.
  • Busetti A, Shaw G, Megaw J, et al. (2015). Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of Tobramycin against Pseudomonas aeruginosa. Mar Drugs 13:1–28.
  • Yang B, Geng SY, Wang JY. Physical stability of cholesterol derivatives combined with liposomes and their in vitro behavior. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2013. p. 4114–17.
  • Hossann M, Syunyaeva Z, Schmidt R, et al. (2012). Proteins and cholesterol lipid vesicles are mediators of drug release from thermosensitive liposomes. J Control Release 162:400–6.
  • Wolfram J, Suri K, Yang Y, et al. (2014). Shrinkage of PEGylated and non-PEGylated liposomes in serum. Colloids Surf B Biointerfaces 114:294–300.
  • Hioki A, Wakasugi A, Kawano K, et al. (2010). Development of an in vitro drug release assay of PEGylated liposome using bovine serum albumin and high temperature. Biol Pharm Bull 33:1466–70.
  • Cipolla D, Wu H, Gonda I, et al. (2015). Aerosol performance and stability of liposomes containing ciprofloxacin nanocrystals. J Aerosol Med Pulm Drug Deliv 28:411–22.
  • Serisier DJ, Bilton D, De Soyza A, et al. (2013). Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial. Thorax 68:812–7.
  • Luiz B, Jim B, Igor G, et al. Treatment of Mycobacterium avium subsp hominissuis (MAH) lung infection with liposome-encapsulated ciprofloxacin resulted in significant decrease in bacterial load in the lung. New York (NY): American Thoracic Society; 2015. p. A6293.
  • Norville IH, Hatch GJ, Bewley KR, et al. (2014). Efficacy of liposome-encapsulated ciprofloxacin in a murine model of Q fever. Antimicrob Agents Chemother 58:5510–18.
  • Ong HX, Traini D, Cipolla D, et al. (2012). Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res 29:3335–46.
  • Zimmerli W, Trampuz APE. (2004). Ochsner prosthetic-joint infections. N Engl J Med 351:1645–54.
  • Ellbogen MH, Olsen KM, Gentry-Nielsen MJ, Preheim LC. (2003). Efficacy of liposome-encapsulated ciprofloxacin compared with ciprofloxacin and ceftriaxone in a rat model of pneumococcal pneumonia. J Antimicrob Chemother 51:83–91.
  • Bozzuto G, Molinari A. (2015). Liposomes as nanomedical devices. Int J Nanomedicine 10:975–99.
  • Genz A, Holzwarth JF, Tsong TY. (1986). The influence of cholesterol on the main phase transition of unilamellar dipalmytoylphosphatidylcholine vesicles. A differential scanning calorimetry and iodine laser T-jump study. Biophys J 50:1043–51.
  • Bolean M, Simão AMS, Favarin BZ, et al. (2010). The effect of cholesterol on the reconstitution of alkaline phosphatase into liposomes. Biophys Chem 152:74–9.
  • de Smet M, Langereis S, den Bosch SV, et al. (2010). Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. J Control Release 143:120–7.
  • Gaber MH, Hong K, Huang SK, et al. (1995). Thermosensitive sterically stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharm Res 12:1407–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.