976
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Experimental assessment of phase aberration correction for breast MRgFUS therapy

ORCID Icon, , , ORCID Icon, & ORCID Icon
Pages 731-743 | Received 22 Aug 2017, Accepted 22 Dec 2017, Published online: 10 Jan 2018

References

  • Kennedy JE. (2005). High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5:321–7.
  • ter Haar G. (2007). Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93:111–29.
  • Jolesz FA. (2009). MRI-guided focused ultrasound surgery. Annu Rev Med 60:417–30.
  • Al-Bataineh O, Jenne J, Huber P. (2012). Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev 38:346–53.
  • Schlesinger D, Benedict S, Diederich C, et al. (2013). MR-guided focused ultrasound surgery, present and future. Med Phys 40:080901.
  • Rieke V, Butts Pauly K. (2008). MR thermometry. J Magn Reson Imaging 27:376–90.
  • Stewart EA, Gedroyc WMW, Tempany CMC, et al. (2003). Focused ultrasound treatment of uterine fibroid tumors: safety and feasibility of a noninvasive thermoablative technique. Am J Obstet Gynecol 189:48–54.
  • Medel R, Monteith SJ, Elias WJ, et al. (2012). Magnetic resonance-guided focused ultrasound surgery: Part 2: a review of current and future applications. Neurosurgery 71:755–63.
  • Hurwitz MD, Ghanouni P, Kanaev SV, et al. (2014). Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst 106(5):dju082. doi: 10.1093/jnci/dju082
  • Kobus T, McDannold N. (2015). Update on clinical magnetic resonance-guided focused ultrasound applications. Magn Reson Imaging Clin N Am 23:657–67.
  • Kuru TH, van Essen J, Pfister D, et al. (2015). Role of focal therapy with high-intensity focused ultrasound in the management of clinically localized prostate cancer. Oncol Res Treat 38:634–8.
  • Bond AE, Dallapiazza R, Huss D, et al. (2016). 132 a randomized, sham-controlled trial of transcranial magnetic resonance-guided focused ultrasound thalamotomy trial for the treatment of tremor-dominant, idiopathic Parkinson disease. Neurosurgery 63:154.
  • Elias WJ, Lipsman N, Ondo WG, et al. (2016). A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 375:730–9.
  • Piper RJ, Hughes MA, Moran CM, et al. (2016). Focused ultrasound as a non-invasive intervention for neurological disease: a review. Br J Neurosurg 30:286–93.
  • ter Haar G, Coussios C. (2007). High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia 23:89–104.
  • Hynynen K, Jones RM. (2016). Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 61:R206–48.
  • Christensen DA. (1988) Ultrasonic bioinstrumentation. New York: Wiley.
  • Thomas JL, Fink MA. (1996). Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to trans skull therapy. IEEE Trans Ultrason Ferroelectr Freq Control 43:1122–9.
  • Hynynen K, Sun J. (1999). Trans-skull ultrasound therapy: the feasibility of using image-derived skull thickness information to correct the phase distortion. IEEE Trans Ultrason Ferroelectr Freq Control 46:752–5.
  • Clement GT, Hynynen K. (2002). A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol 47:1219–36.
  • Aubry JF, Tanter M, Pernot M, et al. (2003). Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 113:84–93.
  • Marquet F, Pernot M, Aubry JF, et al. (2009). Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results. Phys Med Biol 54:2597–613.
  • Hertzberg Y, Volovick A, Zur Y, et al. (2010). Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy. Med Phys 37:2934–42.
  • Almquist S, de Bever J, Merrill R, et al. (2014). A full-wave phase aberration correction method for transcranial high-intensity focused ultrasound brain therapies. Conf Proc IEEE Eng Med Biol Soc 2014;2014:310–13.
  • Kyriakou A, Neufeld E, Werner B, et al. (2014). A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. Int J Hyperthermia 30:36–46.
  • Vyas U, Kaye E, Pauly KB. (2014). Transcranial phase aberration correction using beam simulations and MR-ARFI. Med Phys 41:032901.
  • Kyriakou A, Neufeld E, Werner B, et al. (2015). Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study. J Ther Ultrasound 3:11.
  • Almquist S, Parker DL, Christensen DA. (2016). Rapid full-wave phase aberration correction method for transcranial high-intensity focused ultrasound therapies. J Ther Ultrasound 4:30.
  • Hinkelman LM, Liu DL, Waag RC, et al. (1995). Measurement and correction of ultrasonic pulse distortion produced by the human breast. J Acoust Soc Am 97:1958–69.
  • Mast TD, Hinkelman LM, Metlay LA, et al. (1999). Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall. J Acoust Soc Am 106:3665–77.
  • Tabei M, Mast TD, Waag RC. (2003). Simulation of ultrasonic focus aberration and correction through human tissue. J Acoust Soc Am 113:1166–76.
  • Mougenot C, Tillander M, Koskela J, et al. (2012). High intensity focused ultrasound with large aperture transducers: a MRI based focal point correction for tissue heterogeneity: HIFU large aperture: MRI based heterogeneity correction. Med Phys 39:1936–45.
  • Farrer AI, Almquist S, Dillon CR, et al. (2016). Phase aberration simulation study of MRgFUS breast treatments. Med Phys 43:1374–84.
  • Price ER, Hargreaves J, Lipson JA, et al. (2013). The California breast density information group: a collaborative response to the issues of breast density, breast cancer risk, and breast density notification legislation. Radiology 269:887–92.
  • Scherzinger AL, Belgam RA, Carson PL, et al. (1989). Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis. Ultrasound Med Biol 15:21–8.
  • Duck FA.(2012). Physical properties of tissue: a comprehensive reference book. York, UK: Institute of Physics and Engineering in Medicine.
  • Hasgall P, Di Gennaro F, Baumgartner C, et al. (2016). IT’IS Database for thermal and electromagnetic parameters of biological tissues [Internet]. IT’IS Foundation. Available from: www.itis.ethz.ch/database [last accessed 15 Apr 2017].
  • Vyas U, Christensen D. (2012). Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method. IEEE Trans Ultrason Ferroelectr Freq Control 59:1093–100.
  • Farrer AI, Odéen H, de Bever J, et al. (2015). Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS. J Ther Ultrasound 3:9.
  • De Poorter J, De Wagter C, De Deene Y, et al. (1995). Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle. Magn Reson Med 33:74–81.
  • Ishihara Y, Calderon A, Watanabe H, et al. (1995). A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–23.
  • Le LH. (1998). An investigation of pulse-timing techniques for broadband ultrasonic velocity determination in cancellous bone: a simulation study. Phys Med Biol 43:2295–308.
  • Kak AC, Dines KA. (1978). Signal processing of broadband pulsed ultrasound: measurement of attenuation of soft biological tissues. IEEE Trans Biomed Eng 25:321–44.
  • Pohlhammer JD, Edwards CA, O’Brien WD. (1981). Phase insensitive ultrasonic attenuation coefficient determination of fresh bovine liver over an extended frequency range. Med Phys 8:692–4.
  • Parker KJ, Lyons ME. (1988). Absorption and attenuation in soft tissues. I. Calibration and error analyses. IEEE Trans Ultrason Ferroelectr Freq Control 35:242–52.
  • Moros EG, Hynynen K. (1992). A comparison of theoretical and experimental ultrasound field distributions in canine muscle tissue in vivo. Ultrasound Med Biol 18:81–95.
  • Payne A, Merrill R, Minalga E, et al. (2012). Design and characterization of a laterally mounted phased-array transducer breast-specific MRgHIFU device with integrated 11-channel receiver array. Med Phys 39:1552–60.
  • Minalga E, Payne A, Merrill R, et al. (2013). An 11-channel radio frequency phased array coil for magnetic resonance guided high-intensity focused ultrasound of the breast. Magn Reson Med 69:295–302.
  • Minalga E, Merrill R, Parker DL, et al. (2015). Comparison of improved breast magnetic resonance guided focused ultrasound system with improved radio frequency phased array coils. Proc 23rd Ann Mtg ISMRM 3175.
  • Coombs BD, Szumowski J, Coshow W. (1997). Two-point Dixon technique for water-fat signal decomposition withB0 inhomogeneity correction. Magn Reson Med 38:884–9.
  • Svedin BT, Beck MJ, Hadley JR, et al. (2017). Focal point determination in magnetic resonance-guided focused ultrasound using tracking coils. Magn Reson Med 77:2424–30.
  • Johnson SL, Dillon C, Odéen H, et al. (2016). Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique. Int J Hyperthermia 32:723–34.
  • Lunt MJ, Ashley B. (1979). A simple radiation balance for measuring ultrasonic power. J Med Eng Technol 3:194–7.
  • Maruvada S, Harris GR, Herman BA, et al. (2007). Acoustic power calibration of high-intensity focused ultrasound transducers using a radiation force technique. J Acoust Soc Am 121:1434–9.
  • Dillon CR, Rieke V, Ghanouni P, Payne A. (2017). Thermal diffusivity and perfusion constants from in vivo MR-guided focussed ultrasound treatments: a feasibility study. Int J Hyperthermia [2017 Jun 26];[1–11]. [Epub ahead of print]. doi: 10.1080/02656736.2017.1340677
  • Zar JH. (1999). Biostatistical analysis. 4th ed. Upper Saddle River, NJ: Prentice Hall.
  • Przybylski R, Mag T, Eskin N, McDonald B. (2005). Canola Oil. In: Shahidi F, editor. Bailey’s Industrial Oil and Fat Products. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2:2.
  • Bergman TL, Incropera FP. (2011). Fundamentals of heat and mass transfer. 7th ed. Hoboken, NJ: Wiley.
  • Pajek D, Hynynen K. (2012). The design of a focused ultrasound transducer array for the treatment of stroke: a simulation study. Phys Med Biol 57:4951–68.
  • Damianou CA, Sanghvi NT, Fry FJ, et al. (1997). Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose. J Acoust Soc Am 102:628–34.
  • Gertner MR, Wilson BC, Sherar MD. (1997). Ultrasound properties of liver tissue during heating. Ultrasound Med Biol 23:1395–403.
  • Worthington AE, Trachtenberg J, Sherar MD. (2002). Ultrasound properties of human prostate tissue during heating. Ultrasound Med Biol 28:1311–18.
  • Clarke R, Bush N, Ter Haar G. (2003). The changes in acoustic attenuation due to in vitro heating. Ultrasound Med Biol 29:127–35.
  • Techavipoo U, Varghese T, Chen Q, et al. (2004). Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses. J Acoust Soc Am 115:2859–65.
  • Koskela J, Vahala E, de Greef M, et al. (2014). Stochastic ray tracing for simulation of high intensity focal ultrasound therapy. J Acoust Soc Am 136:1430–40.
  • Ghanouni P, Dobrotwir A, Bazzocchi A, et al. (2017). Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study. Eur Radiol 27:732–40.
  • Sharma N, Aggarwal LM. (2010). Automated medical image segmentation techniques. J Med Phys 35:3.
  • Dillon CR, Vyas U, Payne A, et al. (2012). An analytical solution for improved HIFU SAR estimation. Phys Med Biol 57:4527–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.