1,733
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Are infectious diseases and microbiology new fields for thermal therapy research?

&
Pages 918-924 | Received 09 Aug 2017, Accepted 08 Feb 2018, Published online: 25 Feb 2018

References

  • Hurwitz M, Stauffer P. (2014). Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. Semin Oncol 41:714–29.
  • Giombini A, Giovannini V, Di Cesare A, et al. (2007). Hyperthermia induced by microwave diathermy in the management of muscle and tendon injuries. Br Med Bull 83:379–96.
  • Hegyi G, Szigeti GP, Szász A. (2013). Hyperthermia versus oncothermia: cellular effects in omplementary cancer therapy. Evid Based Complement Alternat Med 2013:672873.
  • Lee SY, Lee NR, Cho DH, et al. (2017). Treatment outcome analysis of chemotherapy combined with modulated electro-hyperthermia compared with chemotherapy alone for recurrent cervical cancer, following irradiation. Oncol Lett 14:73–8.
  • Paulides MM, Bakker JF, Neufeld E, et al. (2007). Winner of the ‘New Investigator Award’ at the European Society of Hyperthermia Oncology Meeting 2007. The HYPERcollar: a novel applicator for hyperthermia. Int J Hyperthermia 23:567–76.
  • Juang T, Stauffer PR, Neuman DG, Schlorff JL. (2006). Multilayer conformal applicator for microwave heating and brachytherapy treatment of superficial tissue disease. Int J Hyperthermia 22:527–44.
  • Boreham DR, Gasmann HC, Mitchel RE. (1995). Water bath hyperthermia is a simple therapy for psoriasis and also stimulates skin tanning in response to sunlight. Int J Hyperthermia 11:745–54.
  • McNichols RJ, Kangasniemi M, Gowda A, et al. (2004). Technical developments for cerebral thermal treatment: water-cooled diffusing laser fibre tips and temperature-sensitive MRI using intersecting image planes. Int J Hyperthermia 20:45–56.
  • Jordan A, Wust P, Fahling H, et al. (2009). Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia 25:499–511. 1993.
  • Partanen A, Yarmolenko PS, Viitala A, et al. (2012). Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery. Int J Hyperthermia 28:320–36.
  • Viglianti BL, Stauffer P, Repasky E, et al. (2010). Hyperthermia. In: Hong W, Bast R Jr, Hait W, Kufe DW, Holland JF, Pollock RE, et al, editors. Holland Frei cancer medicine. Shelton, CT: Peoples Medical Publishing House-USA, 528–40.
  • Issels RD, Lindner LH, Verweij J, et al. (2010). Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11:561–70.
  • Wood BJ, Ramkaransingh JR, Fojo T, et al. (2002). Percutaneous tumor ablation with radiofrequency. Cancer 94:443–51.
  • Hildebrandt B, Wust P, Ahlers O, et al. (2002). The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56.
  • Casadevall A. (2016). Thermal restriction as an antimicrobial function of fever. PLoS Pathog 12:e1005577.
  • Kluger MJ. (1986). Is fever beneficial? Yale J Biol Med 59:89–95.
  • Saper CB, Breder CD. (1994). The neurologic basis of fever. N Engl J Med 330:1880–6.
  • Nikaido H. (2009). Multidrug resistance in bacteria. Annu Rev Biochem 78:119–46.
  • Friedman ND, Temkin E, Carmeli Y. (2016). The negative impact of antibiotic resistance. Clin Microbiol Infect 22:416–22.
  • Patel R. (2005). Biofilms and antimicrobial resistance. Clin Orthop Relat Res 437:41–7.
  • Brook I. (2002). Microbiology of polymicrobial abscesses and implications for therapy. J Antimicrob Chemother 50:805–10.
  • Singer AJ, Talan DA. (2014). Management of skin abscesses in the era of methicillin-resistant Staphylococcus aureus. N Engl J Med 370:1039–47.
  • Lazzarini L, Lipsky BA, Mader JT. (2005). Antibiotic treatment of osteomyelitis: what have we learned from 30 years of clinical trials? Int J Infect Dis 9:127–38.
  • Hacken NHT, ten Wijkstra PJ, Kerstjens HAM. (2007). Treatment of bronchiectasis in adults. BMJ 335:1089–93.
  • Rieck B, Bates D, Zhang K, et al. (2014). Focused ultrasound treatment of abscesses induced by methicillin resistant Staphylococcus aureus: feasibility study in a mouse model. Med Phys 41:063301.
  • Pan WY, Huang CC, Lin TT, et al. (2016). Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomedicine 12:431–8.
  • Chopra R, Shaikh S, Chatzinoff Y, et al. (2017). Employing high-frequency alternating magnetic fields for the non-invasive treatment of prosthetic joint infections. Sci Rep 7:7520.
  • O’Toole A, Ricker EB, Nuxoll E. (2015). Thermal mitigation of Pseudomonas aeruginosa biofilms. Biofouling 31:665–75.
  • Zou G-Y, Shen H, Jiang Y, et al. (2009). Synergistic effect of a novel focal hyperthermia on the efficacy of rifampin in staphylococcal experimental foreign-body infection. J Int Med Res 37:1115–26.
  • Meeker DG, Jenkins SV, Miller EK, et al. (2016). Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect Dis 2:241–50.
  • Stuart Hogg. Essential microbiology. West Sussex, England: John Wiley & Sons Ltd; 2005. Chapter 5, Microbial growth; p. 96–7.
  • Murray PR, Rosenthal KS, Phaller MA. (2016). Medical microbiology. 8th ed. Philadelphia (USA): Elselvier Inc. Chapter 17, Antibacterial agents; p. 162–169.
  • Schreckenberger PC, Daneshvar MI, Hollis DG. (2009). Acinetobacter, Achromobacter, Chryseobacterium, Moraxella and other nonfermentative Gram-negative rods. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA, editors. Manual of clinical microbiology. 9th ed. Ankara: Atlas Kitapcilik, 770–802.
  • Blondel-Hill E, Henry DA, Speert DP. (2009). Pseuodomonas. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA, editors. Manual of clinical microbiology. 9th ed. Ankara: Atlas Kitapcilik, 734–48.
  • LiPuma JJ, Currie BJ, Lum GD, Vandamme PAR. (2009). Burkholderia, Stenotrophomonas, Ralstonia, Cupriavidus, Pandoraea, Brevundimonas, Comamonas, Delftia and Acidovorax. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA, editors. Manual of clinical microbiology. 9th ed. Ankara: Atlas Kitapcilik, 74969.
  • Conville PS, Witebsky FG. (2009). Nocardia, Rhodococcus, Gordonia, Actinomadura, Streptomyces, and other aerobic actinomycetes. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA, editors. Manual of clinical microbiology. 9th ed. Ankara: Atlas Kitapcilik, 5155–42.
  • Lanyi B. (1987). Classical and rapid identification methods for medically important bacteria. In: Colwell RR, Grigorova R, editors. Methods in microbiology, Volume 19. London: Academic Press, 1–67.
  • Manero A, Blanch AR. (1999). Identification of Enterococcus spp. with a biochemical key. Appl Environ Microbiol 65:4425–30.
  • Noguerola I, Blanch AR. (2008). Identification of Vibrio spp. with a set of dichotomous keys. J Appl Microbiol 105:175–85.
  • On SL, Holmes B, Sackin MJ. (1996). A probability matrix for the identification of campylobacters, helicobacters and allied taxa. J Appl Bacteriol 81:425–32.
  • Holmes B, Dawson CA, Pinning CA. (1986). A revised probability matrix for the identification of gram-negative, aerobic, rod-shaped, fermentative bacteria. J Gen Microbiol 132:3113–35.
  • Murray PR, Rosenthal KS, Phaller MA. (2016). Medical microbiology. 8th ed. Philadelphia (USA): Elselvier Inc. Chapter 25, Enterobacteriaceae; p. 251–264.
  • Murray PR, Rosenthal KS, Phaller MA. (2016). Medical microbiology. 8th ed. Philadelphia (USA): Elselvier Inc. Chapter 27, Pseudomonas and related bacteria; p. 272–279.
  • Holmes B, Pinning CA, Dawson CA. (1986). A probability matrix for the identification of gram-negative, aerobic, non-fermentative bacteria that grow on nutrient agar. J Gen Microbiol 132:1827–42.
  • Murray PR, Rosenthal KS, Phaller MA. (2016). Medical microbiology. 8th ed. Philadelphia (USA): Elselvier Inc. Chapter 29, Miscellaneous Gram negative rods; p. 287–300.
  • Wayne LG, Good RC, Krichevsky MI, et al. (1991). Fourth report of the cooperative, open-ended study of slowly growing mycobacteria by the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 41:463–72.
  • Hennekinne JA, Kerouanton A, Brisabois A, et al. (2003). Discrimination of Staphylococcus aureus biotypes by pulsed-field gel electrophoresis of DNA macro-restriction fragments. J Appl Microbiol 94:321–9.
  • Song CW. (1984). Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res 44(10 Suppl):4721–30.
  • Sekins KM, Lehmann JF, Esselman P, et al. (1984). Local muscle blood flow and temperature responses to 915 MHz diathermy as simultaneously measured and numerically predicted. Arch Phys Med Rehabil 65:1–7.
  • Wiper DJ, McNiven DR. (1976). The effect of microwave therapy upon muscle blood flow in man. Br J Sports Med 10:19–21.
  • Pittman RN. (2011). Regulation of tissue oxygenation. San Rafael (CA): Morgan & Claypool Life Sciences. Chapter 4, Oxygen Transport; https://www.ncbi.nlm.nih.gov/books/NBK54103/
  • Stuart Hogg. Essential microbiology. West Sussex, England: John Wiley & Sons Ltd; 2005. Chapter 5, Microbial growth; p. 99–100.
  • Horsman MR. (2006). Tissue physiology and the response to heat. Int J Hyperthermia 22:197–203.
  • Giaouris E, Chorianopoulos N, Nychas GJ. (2005). Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. J Food Prot 68:2149–54.
  • Ramli NS, Eng Guan C, Nathan S, et al. (2012). The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates. PLoS One 7:e44104. doi: 10.1371/journal.pone.0044104
  • Park H, Park HJ, Kim JA, et al. (2011). Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J Microbiol Methods 84:41–5.
  • Fang C-H, Tsai P-I, Huang S-W, et al. (2017). Magnetic hyperthermia enhance the treatment efficacy of peri-implant osteomyelitis. BMC Infect Dis 17:516.
  • Kappel M, Stadeager C, Tvede N, et al. (1991). Effects of in vivo hyperthermia on natural killer cell activity, in vitro proliferative responses and blood mononuclear cell subpopulations. Clin Exp Immunol 84:175–80.
  • Shen RN, Lu L, Young P, et al. (1994). Influence of elevated temperature on natural killer cell activity, lymphokine-activated killer cell activity and lectin-dependent cytotoxicity of human umbilical cord blood and adult blood cells. Int J Radiat Oncol Biol Phys 29:821–6.
  • Baronzio G, Gramaglia A, Fiorentini G. (2006). Hyperthermia and immunity. A brief overview. In Vivo 20:689–95.
  • Foti M, Granucci F, Pelizzola M, et al. (2006). Dendritic cells in pathogen recognition and induction of immune responses: a functional genomics approach. J Leukoc Biol 79:913–16.
  • Abbas AK, Lichtman AHH, Pillai S. (2015). Celluler and molecular immunology. 8th ed. Philadelphia: Elsevier, Saunders. Properties and overview of immune responses; p. 1–12.
  • Knippertz I, Stein MF, Dörrie J, et al. (2011). Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies. Int J Hyperthermia 27:591–603.
  • Liso A, Castellani S, Massenzio F, et al. (2017). Human monocyte-derived dendritic cells exposed to hyperthermia show a distinct gene expression profile and selective upregulation of IGFBP6. Oncotarget 37:60826–40.
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, et al. (2003). Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19:267–94.
  • Schooneveldt G, Bakker A, Balidemaj E, et al. (2016). Thermal dosimetry for bladder hyperthermia treatment. An overview. Int J Hyperthermia 32:417–33.
  • van Rhoon GC, Samaras T, Yarmolenko PS, et al. (2013). CEM43 °C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23:2215–27.
  • Clinical and Laboratory Standards Institute (CLSI). (2012). Performance standards for Antimicrobial susceptibility testings; Twenty-second informational supplement. Pennsylvania: Clinical and Laboratory Standards Institute.
  • Høiby N, Bjarnsholt T, Givskov M, et al. (2010). Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–32.
  • Villa-Rojas R, Zhu M-J, Narayan CP, et al. (2017). Biofilm forming Salmonella strains exhibit enhanced thermal resistance in wheat flour. Food Control 73:689–95.
  • Huo W, Li GH, Qi RQ, et al. (2013). Clinical and immunologic results of local hyperthermia at 44 °C for extensive genital warts in patients with diabetes mellitus. Int J Hyperthermia 29:17–20.
  • Kim MH, Yamayoshi I, Mathew S, et al. (2013). Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann Biomed Eng 41:598–609.
  • Chen C, Chen L, Yi Y, et al. (2016). Killing of Staphylococcus aureus via magnetic hyperthermia mediated by magnetotactic bacteria. Appl Environ Microbiol 82:2219–26.
  • CLSI. (2017). Reference method for broth dilution antifungal susceptibility testing of yeasts. 4th ed. LSI standard M27. Wayne (PA): Clinical and Laboratory Standards Institute.
  • Alastruey-Izquierdo A, Melhem MS, Bonfietti LX, et al. (2015). Susceptibility test for fungi: clinical and laboratorial correlations in medical mycology. Rev Inst Med Trop S Paulo 57:57–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.