1,959
Views
12
CrossRef citations to date
0
Altmetric
Review

Summary of numerical analyses for therapeutic uses of laser-activated gold nanoparticles

&
Pages 1255-1264 | Received 05 Mar 2017, Accepted 08 Feb 2018, Published online: 05 Mar 2018

References

  • van der Zee J, Gonzalez DG, van Rhoon GC, et al. (2000). Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Lancet 355:1119–25.
  • Wust P, Hildebrandt B, Sreenivasa G, et al. (2002). Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–97.
  • Westermann AM, Jones EL, Schem BC, et al. (2005). First results of triple-modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with stage IIB, III, and IVA cervical carcinoma. Cancer 104:763–70.
  • Cherukuri P, Glazer ES, Curleya SA. (2010). Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62:339–45.
  • Petryk AA, Giustini AJ, Gottesman RE, et al. (2013). Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model. Int J Hyperthermia 29:819–27.
  • Crouzet S, Chapelon JY, Rouviere O, et al. (2014). Whole-gland ablation of localized prostate cancer with high-intensity focused ultrasound: oncologic outcomes and morbidity in 1002 patients. Eur Urol 65:907–14.
  • Wang Y, Black KCL, Luehmann H, et al. (2013). Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7:2068–77.
  • JaunichRae M, Kim S, Mitra AK, Guo KZ. (2008). Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int J Heat Mass Transfer 51:5511–21.
  • Hashimoto S, Werner D, Uwada T. (2012). Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J Photochem Photobiol C Photochem Rev 13:28–54.
  • Vogel A, Venugopalan V. (2003). Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644.
  • Luo S, Zhang E, Su Y, et al. (2011). A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–38.
  • Wang LV, Hu S. (2012). Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–62.
  • Kobayashi H, Ogawa M, Alford R, et al. (2010). New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–40.
  • Durduran T, Choe R, Baker WB, Yodh AG. (2010). Diffuse optics for tissue monitoring and tomography. Rep Prog Phys 73: 076701.
  • Li M, Yang X, Ren J, et al. (2012). Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease. Adv Mater24:1722–8.
  • Mitsunaga M, Ogawa M, Kosaka N, et al. (2011). Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17:1685–91.
  • Choi WI, Kim J-Y, Kang C, et al. (2011). Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003.
  • Zhang W, Guo Z, Huang D, et al. (2011). Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32:8555–61.
  • Wang C, Tao H, Cheng L, Liu AZ. (2011). Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32:6145–54.
  • Ntziachristos V. (2010). Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–14.
  • Dressler C, Schwandt D, Beuthan J, et al. (2010). Thermally induced changes of optical and vital parameters in human cancer cells. Laser Phys Lett 7:817–23.
  • TarvainenVauhkonen T, Kolehmainen MV, Arridge SR, Kaipio JP. (2005). Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions. Phys Med Biol 50:4913–30.
  • LiuLu K, Tian Y, Qin J, et al. (2010). Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models. Opt Express 18:20988–1002.
  • Wang L, Jacques SL, Zheng L. (1995). MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Prog Biomed 47:131–46.
  • Boas DA, Culver JP, Stott JJ, Dunn AK. (2002). Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt Express 10:159–70.
  • Alerstam E, Svensson T, Andersson-Engels AS. (2008). Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J Biomed Opt13: 060504.
  • Fang Q, Boas DA. (2009). Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt Express 17:20178–90.
  • Fang Q. (2010). Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates. Biomed Opt Express 1:165–75.
  • Hayakawa CK, Spanier J, Venugopalan V. (2014). Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media. J Opt Soc Am A Opt Image Sci Vis 31:301–11.
  • WattéAernouts R, Van Beers B, Herremans RE, et al. (2015). Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function. Opt Express 23:17467–86.
  • Wang L, Jacques SL, Zheng L. (1997). CONV – convolution for responses to a finite diameter photon beam incident on multi-layered tissues. Comput Methods Prog Biomed 54:141–50.
  • Sehn H, Wang G. (2010). A tetrahedron-based inhomogeneous Monte Carlo optical simulator. Phys Med Biol 55:947.
  • Pratx G, Xing L. (2011). Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce. J Biomed Opt 16:125003.
  • Gorshkov AV, Kirillin MY. (2015). Acceleration of Monte Carlo simulation of photon migration in complex heterogeneous media using Intel many-integrated core architecture. J Biomed Opt 20:85002.
  • Cassidy J, Betz V, Lilge L. (2015). Treatment plan evaluation for interstitial photodynamic therapy in a mouse model by Monte Carlo simulation with FullMonte. Front Phys 3:6.
  • Doronin A, Meglinski I. (2012). Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics. J Biomed Opt 17:90504–1.
  • Quan L, Ramanujam N. (2007). Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. J Opt Soc Am A 24:1011–25.
  • Saha K, Agasti SS, Kim C, et al. (2012). Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–79.
  • Roper DK, Ahn W, Hoepfner M. (2007). Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J Phys Chem C 111:3636–41.
  • Pustovalov VK, Smetannikov AS, Zharov VP. (2008). Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Laser Phys Lett 5:775.
  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. (2011). Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–28.
  • Chaudhuri RG, Paria S. (2012). Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–433.
  • Draeden EC, Alkilany AM, Huang X, et al. (2012). The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–79.
  • Melancon MP, Zhou M, Li C. (2011). Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res 44:947–56.
  • Maltzahn GV, Park J-H, Agrawal A, et al. (2009). Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69:3892–900.
  • Ali MRK, Rahman MA, Wu Y, et al. (2017). Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc Natl Acad Sci USA 114:3110–8.
  • Murphy CJ, Gole AM, Stone JW, et al. (2008). Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–30.
  • Khlebtsov B, Zharov V, Melnikov A, et al. (2006). Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17:5167.
  • Lee K-S, El-Sayed MA. (2005). Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109:20331–8.
  • Stern JM, Solomonov VVK, Sazykina E, et al. (2016). Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int J Toxicol 35:38–46.
  • Ayala-Orozco C, Urban C, Knight MW, et al. (2014). Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8:6372–81.
  • Yang Y, Zhang J, Xia F, et al. (2016). Human CIK cells loaded with Au nanorods as a theranostic platform for targeted photoacoustic imaging and enhanced immunotherapy and photothermal therapy. Nanoscale Res Lett 11:285.
  • Millenbaugh NJ, Baskin JB, DeSilva MN, et al. (2015). Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles. Int J Nanomed 10:1953–60.
  • Khan MS, Bhaisare ML, Gopal J, Hui-Fen W. (2016). Highly efficient gold nanorods assisted laser phototherapy for rapid treatment on mice wound infected by pathogenic bacteria. J Ind Eng Chem 36:49–58.
  • Brito-Silva AM, Sobral RG, Barbosa-Silva R, et al. (2013). Improved synthesis of gold and silver nanoshells. Langmuir 29:4366–72.
  • Lee J, Hua B, Park S, et al. (2014). Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale 6:616–23.
  • Aioub M, El-Sayed MA. (2016). A real-time surface enhanced raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles. J Am Chem Soc 138:1258–64.
  • Robinson R, Gerlach W, Ghandehari H. (2015). Comparative effect of gold nanorods and nanocages for prostate tumor hyperthermia. J Control Release 220:245–52.
  • Kang X, Guo X, Niu X, et al. (2017). Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer. Sci Rep 7:42069.
  • Rengan AK, Bukhari AB, Pradhan A, et al. (2015). In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett 15:842–8.
  • Espinosa A, Silva AKA, Ana S-I, et al. (2016). Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo: toward a plasmonic thermal fingerprint in tumoral environment. Adv Healthcare Mater 5:1040–8.
  • Alfranca G, Artiga Á, Stepien G, et al. (2016). Gold nanoprism–nanorod face off: comparing the heating efficiency, cellular internalization and thermoablation capacity. Nanomedicine 11:2903–16.
  • Fan X, Zheng W, Singh DJ. (2014). Light scattering and surface plasmons on small spherical particles. Light Sci Appl 3:E179.
  • Yang X, Yang M, Pang B, et al. (2015). Gold nanomaterials at work in biomedicine. Chem Rev 115:10410–88.
  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem BB 110:7238–48.
  • Jiang K, Smith DA, Pinchuk A. (2013). Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J Phys Chem C 117:27073–80.
  • Draine BT, Flatau PJ. (1994). Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–9.
  • Yurkin MA, Hoekstra AG. (2011). The discrete-dipole-approximation code ADDA: capabilities and known limitations. J Quant Spectrosc Radiat Transfer 112:2234–47.
  • Mackey MA, Ali MRK, Austin LA, et al. (2014). The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 118:1319–26.
  • Schomaker M, Heinemann D, Kalies S, et al. (2015). Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine. J Nanobiotechnol 13:10.
  • Vartia OS, Ylä-Oijala P, Markkanen J, et al. (2016). On the applicability of discrete dipole approximation. J Quant Spectrsc Radiat Transfer 169:23–5.
  • Li W, Zhang P, Dai M, et al. (2013). Ordering of gold nanorods in confined spaces by directed assembly. Macromolecules 46:2241–8.
  • Cong VT, Ganbold E-O, Saha JK, et al. (2014). Gold nanoparticle silica nanopeapods. J Am Chem Soc 136:3833–41.
  • ZhangLarge QN, Wang H. (2014). Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. ACS Appl Mater Interfaces 6:17255–67.
  • Liu X-L, Wang J-H, Liang S, et al. (2014). Tuning plasmon resonance of gold nanostars for enhancements of nonlinear optical response and Raman scattering. J Phys Chem C 118:9659–64.
  • Pattani VP, Shah J, Atalis A, et al. (2015). Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy. J Nanopart Res 17:20.
  • Jasiński M, Majchrzak E, Turchan L. (2016). Numerical analysis of the interactions between laser and soft tissues using generalized dual-phase lag equation. Appl Math Model 40:750–62.
  • Kashcooli M, Salimpour MR, Shirani AE. (2017). Heat transfer analysis of skin during thermal therapy using thermal wave equation. J Thermal Biol 64:7–18.
  • Deng Z-S, Liu J. (2002). Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. J Biomech Eng 124:638–49.
  • Xu F, Wen T, Lu TJ, Seffen KA. (2008). Skin biothermomechanics for medical treatments. J Mech Behav Biomed Mater 1:172–87.
  • Kannadorai RK, Liu Q. (2013). Optimization in interstitial plasmonic photothermal therapy for treatment planning. Med Phys 40:103301.
  • Singh R, Das K, Okajima J, et al. (2015). Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue. Appl Thermal Eng 89:28–35.
  • Majchrzak E. (2013). Application of different variants of the BEM in numerical modeling of bioheat transfer problems. Mol Cell Biomech 10:201–32.
  • Fahrenholtz SJ, Moon TY, Franco M, et al. (2015). A model evaluation study for treatment planning of laser-induced thermal therapy. Int J Hyperthermia 31:705–14.
  • Cuplov V, Pain F, Sébastien J. (2017). Simulation of nanoparticle-mediated near-infrared thermal therapy using GATE. Biomed Opt Express 8:1665–81.
  • Sugiura T, Matsuki D, Okajima J, et al. (2015). Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling. Nano Res 8:3842–52.
  • Dombrovsky LA, Timchenko V, Jackson M, Yeoh GH. (2011). A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. Int J Heat Mass Transfer 54:5459–69.
  • Cheong S-K, Krishnan S, Cho SH. (2009). Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy. Med Phys 36:4664–71.
  • Huang H-C, Rege K, Heys JJ. (2010). Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano 4:2892–900.
  • Reynoso FJ, Lee C-D, Cheong S-K, Cho SH. (2013). Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method. Med Phys 40:073301.
  • Dombrovsky LA, Timchenko V, Jackson M. (2012). Indirect heating strategy for laser induced hyperthermia: an advanced thermal model. Int J Heat Mass Transfer 55:4688–700.
  • Didychuk C, Ephrat L, Chamson-Reig PA, et al. (2009). Depth of photothermal conversion of gold nanorods embedded in a tissue-like phantom. Nanotechnology 20:195102.
  • Soni S, Tyagi H, Taylor RA, Kumar A. (2013). Role of optical coefficients and healthy tissue-sparing characteristics in gold nanorod-assisted thermal therapy. Int J Hyperthermia 29:87–97.
  • Feng Y, Fuentes D, Hawkins A, et al. (2009). Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Eng Comput 25:3–13.
  • Mooney R, Schena E, Saccomandi P, et al. (2017). Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings. Int J Hyperthermia 33:150–9.
  • Letfullin RR, Iversen CB, George TF. (2011). Modeling nanophotothermal therapy: kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. Nanomed Nanotechnol Biol Med 7:137–45.
  • Richardson HH, Carlson MT, Tandler PJ, et al. (2009). Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 9:1139–46.
  • Delfour L, Itina TE. (2015). Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights. J Phys Chem C 119:13893–900.
  • Zhong J, Wen L, Yang S, et al. (2015). Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods. Nanomedicine Nanotechnol Biol Med 11:1499–509.
  • Siems A, Weber SAL, Boneberg J, Plech A. (2011). Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles. New J Phys 13:043018.
  • Lombard J, Biben T, Merabia S. (2016). Ballistic heat transport in laser generated nano-bubbles. Nanoscale 8:14870–6.
  • Dewhirst M, Viglianti B, Lora-Michiels M, et al. (2003). Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19:267–94.
  • Sarapeto a SA, Dewey WC. (1984). Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800.
  • Pearce JA. Relationship between Arrhenius models of thermal damage and the CEM 43, Proceedings Volume 7181, Energy-based Treatment of Tissue and Assessment V, San Jose, CA; 2009.
  • Pearce JA. (2013). Comparative analysis of mathematical models of cell death and thermal damage processes. Int J Hyperthermia 29:262–80.
  • Manuchehrabadi N, Zhu L. (2014). Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy. Int J Hyperthermia 30:349–61.
  • Feng Y, Fuentes D, Hawkins A, et al. (2009). Optimization and real-time control for laser treatment of heterogeneous soft tissues. Comput Methods Appl Mech Eng 198:1742–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.