1,947
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems: a simulation study

, , , ORCID Icon & ORCID Icon
Pages 714-730 | Received 05 Oct 2017, Accepted 27 Feb 2018, Published online: 18 Apr 2018

References

  • Cihoric N, Tsikkinis A, van Rhoon G, et al. (2015). Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperthermia 31:609–14.
  • Van der Zee J, González González D, Van Rhoon GC, et al. (2000). Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355:1119–25.
  • Ohguri T, Harima Y, Imada H, et al. (2017). Relationships between thermal dose parameters and the efficacy of definitive chemoradiotherapy plus regional hyperthermia in the treatment of locally advanced cervical cancer: data from a multicentre randomised clinical trial. Int J Hyperthermia. [Epub ahead of print]. DOI:10.1080/02656736.2017.1352105
  • Maluta S, Dall’oglio S, Romano M, et al. (2007). Conformal radiotherapy plus local hyperthermia in patients affected by locally advanced high risk prostate cancer: preliminary results of a prospective phase II study. Int J Hyperthermia 23:451–6.
  • Wust P, Rau B, Gellerman J, et al. (1998). Radiochemotherapy and hyperthermia in the treatment of rectal cancer. Recent Results Cancer Res 146:175–91.
  • Inman BA, Stauffer PR, Craciunescu OA, et al. (2014). A pilot clinical trial of intravesical mitomycin-C and external deep pelvic hyperthermia for non-muscle-invasive bladder cancer. Int J Hyperthermia 30:171–5.
  • Geijsen ED, De Reijke TM, Koning CCE, et al. (2015). Combining mitomycin C and regional 70 MHz hyperthermia in patients with nonmuscle invasive bladder cancer: a pilot study. J Urol 194:1202–8.
  • Datta NR, Rogers S, Klingbiel D, et al. (2016). Hyperthermia and radiotherapy with or without chemotherapy in locally advanced cervical cancer: a systematic review with conventional and network meta-analyses. Int J Hyperthermia 32:809–21.
  • Franckena M, Fatehi D, de Bruijne M, et al. (2009). Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer 45:1969–78.
  • Sapareto SA, Dewey WC. (1984). Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800.
  • Hiraoka M, Jo S, Akuta K, et al. (1987). Radiofrequency capacitive hyperthermia for deep-seated tumors. II. Effects of thermoradiotherapy. Cancer 60:128–35.
  • Hiraoka M, Jo S, Akuta K, et al. (1987). Radiofrequency capacitive hyperthermia for deep-seated tumors. I. Studies on thermometry. Cancer 60:121–7.
  • Harima Y, Ohguri T, Imada H, et al. (2016). A multicentre randomised clinical trial of chemoradiotherapy plus hyperthermia versus chemoradiotherapy alone in patients with locally advanced cervical cancer. Int J Hyperthermia 32:801–8.
  • Tomura K, Ohguri T, Mulder HT, et al. (2017). The usefulness of mobile insulator sheets for the optimization of deep heating area for regional hyperthermia using a capacitively-coupled heating method: phantom, simulation and clinical prospective studies. Int J Hyperthermia. [Epub ahead of print]. DOI:10.1080/02656736.2017.1402130
  • Issels RD, Lindner LH, Verweij J, et al. (2010). Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11:561–70.
  • Kato H, Hyodo K, Akassa N, et al. (1997). Optimization of bolus for capacitive type heating. Jpn J Hyperthermic Oncol 13:10–7.
  • Abe M, Hiraoka M, Takahashi M, et al. (1986). Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy. Cancer 58:1589–95.
  • Paulsen KD, Geimer S, Tang J, et al. (1999). Optimization of pelvic heating rate distributions with electromagnetic phased arrays. Int J Hyperthermia 15:157–86.
  • Wust P, Seebass M, Nadobny J, et al. (1996). Simulation studies promote technological development of radiofrequency phased array hyperthermia. Int J Hyperthermia 12:477–94.
  • Kok HP, De Greef M, Borsboom PP, et al. (2011). Improved power steering with double and triple ring waveguide systems: the impact of the operating frequency. Int J Hyperthermia 27:224–39.
  • Turner PF, Tumeh A, Schaefermeyer T. (1989). BSD-2000 approach for deep local and regional hyperthermia: physics and technology. Strahlenther Onkol 165:738–41.
  • van Dijk JDP, Schneider CJ, van Os RM, et al. (1990). Results of deep body hyperthermia with large waveguide radiators. Adv Exp Med Biol 267:315–19.
  • Oleson JR, Sim DA, Conrad J, et al. (1986). Results of a phase I regional hyperthermia device evaluation: microwave annular array versus radiofrequency induction coil. Int J Hyperthermia 2:327–36.
  • Oleson JR. (1984). Regional power deposition for hyperthermia: theoretical approaches and considerations. Cancer Res 44:4761s–4s.
  • Kok HP, Wust P, Stauffer PR, et al. (2015). Current state of the art of regional hyperthermia treatment planning: a review. Radiat Oncol 10:196.
  • Kok HP, De Greef M, Wiersma J, et al. (2010). The impact of the waveguide aperture size of the 3D 70 MHz AMC-8 loco-regional hyperthermia system on tumour coverage. Phys Med Biol 55:4899–916.
  • Kok HP, Crezee J. (2017). A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Int J Hyperthermia 33:378–86.
  • Kok HP, De Greef M, Van Wieringen N, et al. (2010). Comparison of two different 70 MHz applicators for large extremity lesions: simulation and application. Int J Hyperthermia 26:376–88.
  • Kok HP. (2010). Comparison of two different 70 MHz applicators for large extremity lesions: simulation and application (vol 26, pg 376, 2010). Int J Hyperthermia 26:413–14.
  • Kroeze H, Kokubo M, van de Kamer JB, et al. (2002). Comparison of a capacitive and a cavity slot radiative applicator for regional hyperthermia. Jpn J Hyperthermic Oncol 18:75–91.
  • Kok HP, Kotte ANTJ, Crezee J. (2017). Planning, optimisation and evaluation of hyperthermia treatments. Int J Hyperthermia 33:593–607.
  • Kroeze H, van de Kamer JB, de Leeuw AA, et al. (2003). Treatment planning for capacitive regional hyperthermia. Int J Hyperthermia 19:58–73.
  • De Bree J, (1998). A 3-D anatomy based treatment planning system for interstitial hyperthermia. PhD Thesis; Utrecht University.
  • Crezee J, Van Haaren PMA, Westendorp H, et al. (2009). Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study. Int J Hyperthermia 25:581–92.
  • Oncotherm. (2017). http://www.oncotherm.com/.
  • Celsius42+. (2017). http://www.celsius42.de/.
  • Synchrotherm. (2017). www.synchrotherm.com.
  • HY-DEEP 600WM. (2017). http://www.andromedic.it/.
  • Thermotron RF-8. (2017). http://www.mpr-cro.com/thermotron/.
  • Ohguri T, Imada H, Yahara K, et al. (2004). Effect of 8-MHz radiofrequency-capacitive regional hyperthermia with strong superficial cooling for unresectable or recurrent colorectal cancer. Int J Hyperthermia 20:465–75.
  • Ohguri T, Imada H, Kato F, et al. (2006). Radiotherapy with 8 MHz radiofrequency-capacitive regional hyperthermia for pain relief of unresectable and recurrent colorectal cancer. Int J Hyperthermia 22:1–14.
  • Hornsleth SN, Mella O, Dahl O. (1996). A new segmentation algorithm for finite difference based treatment planning systems. In: Franconi C, Arcangeli G, Cavaliere R, eds. Hyperthermic oncology, vol. 2. Rome, Italy: Tor Vergata, 521–523.
  • Taflove A, Hagness SC. (2000). Computational electrodynamics. 2nd ed. Boston, London: Artech House.
  • Berenger JP. (1994). A perfectly matched layer for the absorption of electromagnetic-waves. J Comput Phys 114:185–200.
  • de Bree J, van der Koijk JF, Lagendijk JJW. (1996). A 3-D SAR model for current source interstitial hyperthermia. IEEE Trans Biomed Eng 43:1038–45.
  • Gabriel S, Lau RW, Gabriel C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–69.
  • ESHO Taskgroup Committee, “Treatment Planning and Modelling in Hyperthermia, a Task Group Report of the European Society for Hyperthermic Oncology (Rome, Italy: Tor Vergata),” 1992.
  • Rossmann C, Haemmerich D. (2014). Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit Rev Biomed Eng 42:467–92.
  • Balidemaj E, de Boer P, van Lier AL, et al. (2016). In vivo electric conductivity of cervical cancer patients based on B(1)(+) maps at 3T MRI. Phys Med Biol 61:1596–607.
  • Raoof M, Cisneros BT, Corr SJ, et al. (2013). Tumor selective hyperthermia induced by short-wave capacitively-coupled RF electric-fields. PLoS One 8:e68506.
  • Pennes HH. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122.
  • Yuan Y, Cheng KS, Craciunescu OI, et al. (2012). Utility of treatment planning for thermochemotherapy treatment of nonmuscle invasive bladder carcinoma. Med Phys 39:1170–81.
  • Oleson JR, Samulski TV, Leopold KA, et al. (1993). Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. Int J Radiat Oncol Biol Phys 25:289–97.
  • Dewhirst MW, Vujaskovic Z, Jones E, et al. (2005). Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia 21:779–90.
  • Van Haaren PM, Hulshof MC, Kok HP, et al. (2008). Relation between body size and temperatures during locoregional hyperthermia of oesophageal cancer patients. Int J Hyperthermia 24:663–74.
  • Rhee JG, Lee CK, Osborn J, et al. (1991). Precooling prevents overheating of subcutaneous fat in the use of RF capacitive heating. Int J Radiat Oncol Biol Phys 20:1009–15.
  • van Rhoon GC, van der Zee J, Broekmeyer-Reurink MP, et al. (1992). Radiofrequency capacitive heating of deep-seated tumours using pre-cooling of the subcutaneous tissues: results on thermometry in Dutch patients. Int J Hyperthermia 8:843–54.
  • Kroeze H, van de Kamer JB, De Leeuw AAC, et al. (2001). Regional hyperthermia applicator design using FDTD modelling. Phys Med Biol 46:1919–35.
  • de Bruijne M, Wielheesen DH, Van der Zee J, et al. (2007). Benefits of superficial hyperthermia treatment planning: five case studies. Int J Hyperthermia 23:417–29.
  • Paulides MM, Stauffer PR, Neufeld E, et al. (2013). Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia 29:346–57.
  • Erdmann B, Lang J, Seebass M. (1998). Optimization of temperature distributions for regional hyperthermia based on a nonlinear heat transfer model. Ann N Y Acad Sci 858:36–46.
  • De Greef M, Kok HP, Correia D, et al. (2011). Uncertainty in hyperthermia treatment planning: the need for robust system design. Phys Med Biol 56:3233–50.
  • Drizdal T, Paulides MM, van Holthe N, et al. (2017). Hyperthermia treatment planning guided applicator selection for sub-superficial head and neck tumors heating. Int J Hyperthermia. [Epub ahead of print]. DOI:10.1080/02656736.2017.1383517
  • Sreenivasa G, Gellermann J, Rau B, et al. (2003). Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity. Int J Radiat Oncol Biol Phys 55:407–19.
  • Kok HP, Korshuize - van Straten L, Bakker A, et al. (2017). On-line adaptive hyperthermia treatment planning during locoregional heating to suppress treatment limiting hot spots. Int J Radiat Oncol Biol Phys 99:1039–47.
  • Kok HP, Ciampa S, De Kroon-Oldenhof R, et al. (2014). Toward on-line adaptive hyperthermia treatment planning: correlation between measured and simulated specific absorption rate changes caused by phase steering in patients. Int J Radiat Oncol Biol Phys 90:438–45.
  • Kok HP, Korshuize-van Straten L, Bakker A, et al. (2017). Feasibility of on-line temperature-based hyperthermia treatment planning to improve tumour temperatures during locoregional hyperthermia. Int J Hyperthermia. [Epub ahead of print]. DOI:10.1080/02656736.2017.1400120
  • ALBA. (2017). www.albahyperthermia.com.
  • Schneider CJ, van Dijk JD, De Leeuw AA, et al. (1994). Quality assurance in various radiative hyperthermia systems applying a phantom with LED matrix. Int J Hyperthermia 10:733–47.
  • Sahinbas H, Rosch M, Demiray M. (2017). Temperature measurements in a capacitive system of deep loco-regional hyperthermia. Electromagn Biol Med 36:248–58.
  • Harima Y, Nagata K, Harima K, et al. (2001). A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int J Hyperthermia 17:97–105.
  • Kouloulias VE, Kouvaris JR, Nikita KS, et al. (2002). Intraoperative hyperthermia in conjunction with multi-schedule chemotherapy (pre-, intra- and post-operative), by-pass surgery, and post-operative radiotherapy for the management of unresectable pancreatic adenocarcinoma. Int J Hyperthermia 18:233–52.
  • Kouloulias VE, Nikita KS, Kouvaris JR, et al. (2002). Intraoperative hyperthermia and chemoradiotherapy for inoperable pancreatic carcinoma. Eur J Cancer Care (Engl) 11:100–7.
  • Yamada S, Takai Y, Nemoto K, et al. (1992). Intraoperative radiation therapy combined with hyperthermia against pancreatic carcinoma. Tohoku J Exp Med 166:395–401.
  • Masunaga S, Hiraoka M, Takahashi M, et al. (1990). Clinical results of thermoradiotherapy for locally advanced and/or recurrent breast cancer-comparison of results with radiotherapy alone. Int J Hyperthermia 6:487–97.
  • Huilgol NG, Gupta S, Dixit R. (2010). Chemoradiation with hyperthermia in the treatment of head and neck cancer. Int J Hyperthermia 26:21–5.
  • Li G, Mitsumori M, Ogura M, et al. (2004). Local hyperthermia combined with external irradiation for regional recurrent breast carcinoma. Int J Clin Oncol 9:179–83.
  • Van Wieringen N, Wiersma J, Zum Vörde Sive Vörding PJ, et al. (2009). Characteristics and performance evaluation of the capacitive contact flexible microstrip applicator operating at 70 MHz for external hyperthermia. Int J Hyperthermia 25:542–53.
  • de Bruijne M, van der Holt B, van Rhoon GC, et al. (2010). Evaluation of CEM43 degrees CT90 thermal dose in superficial hyperthermia: a retrospective analysis. Strahlenther Onkol 186:436–43.
  • Sherar M, Liu FF, Pintilie M, et al. (1997). Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiat Oncol Biol Phys 39:371–80.
  • Leopold KA, Dewhirst MW, Samulski TV, et al. (1993). Cumulative minutes with T(90) greater than Tempindex is predictive of response of superficial malignancies to hyperthermia and radiation. Int J Radiat Oncol Biol Physics 25:841–7.
  • Hand JW, Lagendijk JJ, Bach Andersen J, et al. (1989). Quality assurance guidelines for ESHO protocols. Int J Hyperthermia 5:421–8.
  • Yee KS. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302–7.