1,445
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Estimation of the temperature field in laser-induced hyperthermia experiments with a phantom

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 279-290 | Received 27 Dec 2017, Accepted 29 Jun 2018, Published online: 11 Sep 2018

References

  • Breasted JH. The Edwin Smith surgical papyrus: published in facsimile and hieroglyphic transliteration with translation and commentary. Univ. Chicago Orient. Inst. Publ. 1930. Available from http://trove.nla.gov.au/work/19048049%5Cnhttps://oi.uchicago.edu/research/pubs/catalog/oip/oip3.html%5Cnhttps://oi.uchicago.edu/research/pubs/catalog/oip/oip4.html%5Cnhttp://trove.nla.gov.au/version/41376704.
  • Datta NR, Ordóñez SG, Gaipl US, et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41:742–753.
  • Mallory M, Gogineni E, Jones GC, et al. Therapeutic hyperthermia: The old, the new, and the upcoming. Crit Rev Oncol Hematol. 2016;97:56–64.
  • Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv. 2011;2:1001–1014.
  • Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA. 2003;100:13549–13554.
  • El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5:829–834.
  • O'Neal DP, Hirsch LR, Halas NJ, et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209:171–176.
  • Stafford RJ, Taylor BA. Practical clinical thermometry. In: Morose, E, editor. Physics of thermal therapy. Boca Raton (FL): CRC Press; 2013. pp. 41–52.
  • Schena E, Tosi D, Saccomandi P, et al. Fiber optic sensors for temperature monitoring during thermal treatments: an overview. Sensors. 2016;16:1144.
  • Winter L, Oberacker E, Paul K, et al. Magnetic resonance thermometry: methodology, pitfalls and practical solutions. Int J Hyperthermia. 2016;32:63–75.
  • Pacheco CC, Orlande HRB, Colaço MJ, et al. State estimation problems in PRF-shift magnetic resonance thermometry. Int J Numer Methods. 2018;28:315–335.
  • Notter M, Piazena H, Vaupel P. Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: a retrospective study of 73 patients. Int J Hyperth. 2017;33:227–236.
  • Lamien B, Orlande HRB, Eliçabe EG. Particle filter and approximation error model for state estimation in hyperthermia. J Heat Transfer. 2016;139:012001.
  • Dos Santos I, Haemmerich D, Schutt D, et al. Probabilistic finite element analysis of radiofrequency liver ablation using the unscented transform. Phys Med Biol. 2009;54:627–640.
  • Varon LAB, Orlande HRB, Eliçabe GE. Estimation of state variables in the hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves. Int J Therm Sci. 2015;98:228–236.
  • Lamien B, Orlande HRB, Eliçabe GE. Inverse problem in the hyperthermia therapy of cancer with laser heating and plasmonic nanoparticles. Inverse Probl Sci Eng. 2017;25:608–631.
  • Varon LAB, Orlande HRB, Eliçabe GE. Combined parameter and state estimation in the radio frequency hyperthermia treatment of cancer. Numerical Heat Transfer, Part. A Aplicattions. 2016;70:581–594.
  • Lamien B, Varon LAB, Orlande HRB, et al. State estimation in bioheat transfer: a comparison of particle filter algorithms. Int J Numer Methods. 2017;27:615–638.
  • Dombrovsky LA, Timchenko V, Pathak C, et al. Radiative heating of superficial human tissues with the use of water-filtered infrared-A radiation: a computational modeling. Int J Heat Mass Transf. 2015;85:311–320.
  • Paulides MM, Stauffer PR, Neufeld E, et al. Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia. 2013;29:346–357.
  • Pearce JA. Comparative analysis of mathematical models of cell death and thermal damage processes. Int J Hyperthermia. 2013;29:262–280.
  • Robert CP, Doucet A, Andrieu C. Computational advances for and from Bayesian analysis. Stat Sci. 2004;19:118–127.
  • Andrieu C, Doucet A, Singh SS, et al. Particle methods for change detection, system identification, and control. Proc IEEE. 2004;92:423–438.
  • Arulampalam MS, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process. 2002;50:174–188.
  • Carpenter J, Clifford P, Fearnhead P. An improved particle filter for non-linear problems. IEE Proc Radar Sonar Navig. 1999;146:2.
  • Doucet A, De Freitas N, Gordon N. Sequential Monte Carlo methods in practice. New York: Springer. 2001;178–195.
  • Kantas N, Doucet A, Singh SS, et al. On particle methods for parameter estimation in state-space models. Stat Sci. 2015;30:328–351.
  • Liu J, West M. Combined parameter and state estimation in simulation-based filtering. In: De Freitas JFG, Doucet, A, Gordon NJ, editors. Sequential Monte Carlo Methods in Practice. New York (NY): Springer-Verlag; 2001. pp. 197–223.
  • Del Moral P, Doucet A, Jasra A. Sequential Monte Carlo samplers. J Royal Stat Soc B. 2006;68:411–436.
  • Kihal A, Bouzabata B, Fillion G, et al. Magnetic and structural properties of nanocrystalline iron oxides. Physics Procedia. 2009;2:665–671.
  • Mahadevan S, Gnanaprakash G, Philip J, et al. X-ray diffraction-based characterization of magnetite nanoparticles in presence of goethite and correlation with magnetic properties. Physica E Low Dimens Syst Nanostruct. 2007;39:20–25.
  • Maybeck PS, Siouris GM. Stochastic models, estimation, and control, Volume I. IEEE Trans Syst Man Cybern. 1980;10:282–282.
  • Kalman RE. A new approach to linear filtering and prediction problems. J Basic Eng. 1960;82:35.
  • Kaipio JP, Fox C. The Bayesian framework for inverse problems in heat transfer. Heat Transf Eng. 2011;32:718–753.
  • Rios MP, Lopes HF. The extended Liu and West filter: parameter learning in markov switching stochastic volatility models. State-sp. Model. Appl Econ Financ Stat Econ Financ. 2013;1:23–62.
  • Sheinson DM, Niemi J, Meiring W. Comparison of the performance of particle filter algorithms applied to tracking of a disease epidemic. Math Biosci. 2014;255:21–32.
  • Lopes HF, Carvalho CM, Online Bayesian learning in dynamic models: an illustrative introduction to particle methods. In: Damien P, Dellaportas P, Polson NG, et al. editors. Bayesian Theory Appl. Oxford University. Oxford, UK: Oxford University Press; 2013.
  • Candy JV. Bayesian signal processing: classical, modern, and particle filtering methods. Class Mod Part Filter Methods. New York (NY): Wiley-Interscience; 2008.
  • Orlande H, Colaço M, Dulikravich G, et al. State estimation problems in heat transfer. Int J Uncertain Quantif. 2012;2:239–258.
  • West M. Approximating posterior distributions by mixture. J R Stat Soc Ser B. 1993;55:409–422.
  • Fonseca M, Zeqiri B, Beard P, et al. Characterisation of a PVCP-based tissue-mimicking phantom for quantitative photoacoustic imaging. Proc SPIE Opto-Acoustic Methods Appl Biophotonics II. 2015;9539:953911.
  • Jeong EJ, Song HW, Lee YJ, et al. Fabrication and characterization of PVCP human breast tissue-mimicking phantom for photoacoustic imaging. Biochip J. 2017;11:67–75.
  • Fahrenholtz S, Stafford RJ, Maier F, et al. Generalized polynomial chaos based uncertainty quantification for planning MRgLITT procedures. Int J Hyperthermia. 2013;29:324–335.