1,536
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Development of custom RF coils for use in a small animal platform for magnetic resonance-guided focused ultrasound hyperthermia compatible with a clinical MRI scanner

, , , & ORCID Icon
Pages 348-360 | Received 27 Feb 2018, Accepted 18 Jul 2018, Published online: 08 Oct 2018

References

  • Hahn G. Potential for therapy of drugs and hyperthermia. Cancer Res. 1979;39:2264–2268.
  • Ranjan A, Benjamin CJ, Negussie AH, et al. Biodistribution and efficacy of low temperature-sensitive liposome encapsulated docetaxel combined with mild hyperthermia in a mouse model of prostate cancer. Pharm Res. 2016;33:2459–2469.
  • van der Zee J, González D, van Rhoon GC, et al. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. The Lancet. 2000;355:1119–1125.
  • Tillander M, Hokland S, Koskela J, et al. High intensity focused ultrasound induced in vivo large volume hyperthermia under 3D MRI temperature control. Med Phys. 2016;43:1539–1549.
  • Issels RD, Lindner LH, Verweij J, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2010;11:561–570.
  • Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 2000;60:4440–4445.
  • Horsman MR, Overgaard J. Hyperthermia: a Potent Enhancer of Radiotherapy. Clin Oncol (R Coll Radiol)). 2007;19:418–426.
  • Vernon CC, Hand JW, Field SB, et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. Int J Radiat Oncol Biol Phys. 1996;35:731–744.
  • Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperthermia. 2001;17:1–18.
  • Ellis S, Rieke V, Kohi M, et al. Clinical applications for magnetic resonance guided high intensity focused ultrasound (MRgHIFU): present and future: clinical applications for MRgHIFU. J Med Imaging Radiat Oncol. 2013;57:391–399.
  • Masucci L, Goeree R. Magnetic Resonance–Guided High-Intensity Focused Ultrasound (MRgHIFU) Treatment of Symptomatic Uterine Fibroids: An Evidence-Based Analysis. Ont Health Technol Assess Ser. 2013;13:1.
  • Zhou M, Chen J-Y, Tang L-D, et al. Ultrasound-guided high-intensity focused ultrasound ablation for adenomyosis: the clinical experience of a single center. Fertil Steril. 2011;95:900–905.
  • Kennedy JE. Innovation: High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5:321–327.
  • Mougenot C, Quesson B, de Senneville BD, et al. Three-dimensional spatial and temporal temperature control with MR thermometry-guided focused ultrasound (MRgHIFU). Magn Reson Med. 2009;61:603–614.
  • Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 1995;34:814–823.
  • Hesley GK, Felmlee JP, Gebhart JB, et al. Noninvasive treatment of uterine fibroids: early Mayo Clinic experience with magnetic resonance imaging-guided focused ultrasound. Mayo Clin Proc. 2006;81:936–942.
  • Tempany CMC, Stewart EA, McDannold N, et al. MR imaging–guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology. 2003;226:897–905.
  • Hurwitz MD, Ghanouni P, Kanaev SV, et al. Magnetic resonance–guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst [Internet]. 2014;106:106. [cited 2017 Dec 14];Available from: https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/dju082.
  • Bing C, Nofiele J, Staruch R, et al. Localised hyperthermia in rodent models using an MRI-compatible high-intensity focused ultrasound system. Int J Hyperthermia. 2015;31:813–822.
  • Chopra R, Curiel L, Staruch R, et al. An MRI-compatible system for focused ultrasound experiments in small animal models. Med Phys. 2009;36:1867
  • Hijnen N, Heijman E, Kohler M, et al. Tumor hyperthermia and ablation in rats using a clinical MR-HIFU system equipped with a dedicated small animal setup. Int J Hyperthermia. 2012;28:141–155.
  • Ellens NPK, Partanen A. Preclinical MRI-guided focused ultrasound: a review of systems and current practices. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64:291–305.
  • Rieck B, Curiel L, Mougenot C, et al. Treatment of localized abscesses induced by methicillin-resistant Staphylococcus aureus (MRSA) using MRgFUS: First in vivo results. 2012 [cited 2015 Oct 27]. p. 173–178. Available from: http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4769938.
  • Virieux J. SH-wave propagation in heterogeneous media: velocity‐stress finite‐difference method. GEOPHYSICS. 1984;49:1933–1942.
  • Pichardo S, Moreno-Hernández C, Andrew Drainville R, et al. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull. Phys Med Biol. 2017;62:6938–6962.
  • Levander AR. Fourth-order finite-difference P-SV seismograms. Geophysics. 1988;53:1425–1436.
  • Robertsson JOA, Blanch JO, Symes WW. Viscoelastic finite-difference modeling. Geophysics. 1994;59:1444–1456.
  • Bohlen T. Parallel 3-D viscoelastic finite difference seismic modelling. Comput Geosci. 2002;28:887–899.
  • Zaporzan B, Waspe AC, Looi T, et al. MatMRI and MatHIFU: software toolboxes for real-time monitoring and control of MR-guided HIFU. J Ther Ultrasound. 2013;1:7.
  • Pichardo S, Köhler M, Lee J, et al. In vivo optimisation study for multi-baseline MR-based thermometry in the context of hyperthermia using MR-guided high intensity focused ultrasound for head and neck applications. Int J Hyperthermia. 2014;30:579–592.
  • Bing C, Staruch RM, Tillander M, et al. Drift correction for accurate PRF-shift MR thermometry during mild hyperthermia treatments with MR-HIFU. Int J Hyperthermia. 2016;32:673–687.
  • El-Sharkawy AM, Schär M, Bottomley PA, et al. Monitoring and correcting spatio-temporal variations of the MR scanner’s static magnetic field. Magn Reson Mater Phy. 2006;19:223–236.
  • Hayes CE, Axel L. Noise performance of surface coils for magnetic resonance imaging at 1.5 T. Med Phys. 1985;12:604–607.
  • Hurwitz MD, Kaplan ID, Hansen JL, et al. Hyperthermia combined with radiation in treatment of locally advanced prostate cancer is associated with a favourable toxicity profile. Int J Hyperthermia. 2005;21:649–656.
  • Hand JW, Machin D, Vernon CC, et al. Analysis of thermal parameters obtained during phase III trials of hyperthermia as an adjunct to radiotherapy in the treatment of breast carcinoma. Int J Hyperthermia. 1997;13:343–364.
  • Mack CF, Stea B, Kittelson JM, et al. Interstitial thermoradiotherapy with ferromagnetic implants for locally advanced and recurrent neoplasms. Int J Radiat Oncol. 1993;27:109–115.
  • Insko EK, Bolinger L. Mapping of the radiofrequency field. J Magn Reson A. 1993;103:82–85.
  • Ballon D, Graham MC, Miodownik S, et al. A 64 MHz half-birdcage resonator for clinical imaging. J Magn Reson. 1990;90:131–140.
  • Othman MIA, Ali MGS, Farouk RM. The effect of relaxation time on the heat transfer and temperature distribution in tissues. WJM. 2011;01:283–287.
  • Burk D, Kanal E, Brunberg J, et al. 1.5-T surface-coil MRI of the knee. Am J Roentgenol. 1986;147:293–300.
  • Leifer MC. Theory of the quadrature elliptic birdcage coil. Magn Reson Med. 1997;38:726–732.
  • Doty FD, Entzminger G, Hauck CD, et al. Practical aspects of birdcage coils. J Magn Reson. 1999;138:144–154.
  • Doty FD, Entzminger G, Kulkarni J, et al. Radio frequency coil technology for small-animal MRI. NMR Biomed. 2007;20:304–325.