2,665
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound

&
Pages 419-434 | Received 14 May 2018, Accepted 25 Jul 2018, Published online: 11 Oct 2018

References

  • Wu F, Zhou L, Chen WR. Host antitumour immune responses to HIFU ablation. Int J Hyperthermia. 2007;23:165–171.
  • Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5:321–327.
  • Haar GT, Coussios C. High intensity focused ultrasound: Physical principles and devices. Int J Hyperthermia. 2007;23:89–104.
  • Liu X, Li J, Gong X. Nonlinear absorption in biological tissue for high intensity focused ultrasound. Ultrasonics. 2006; 44:e27–e30.
  • Bjørnø L. Introduction to nonlinear acoustics. Phys Procedia. 2010;3:5–16.
  • Ginter S. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption. Ultrasonics. 2000;37:693–696.
  • Solovchuk M. a, Sheu TWH, Thiriet M, et al. On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor. Appl. Therm. Eng. 2013;56:62–76.
  • Ji X, Li D, Shen G, et al. A method of introducing cooling time between multiple sonications in focused ultrasound surgery. Int J Heat Mass Transf. 2013;56:403–410.
  • Sassaroli E, Li KCP, O'Neill BE. Modeling focused ultrasound exposure for the optimal control of thermal dose distribution. Scientific World Journal. 2012;2012:1.
  • Sheu TWH, Solovchuk MA, Chen AWJ, et al. On an acoustics-thermal-fluid coupling model for the prediction of temperature elevation in liver tumor. Int J Heat Mass Transf. 2011;54:4117–4126.
  • Humphrey VF. Ultrasound and matter-Physical interactions. Prog Biophys Mol Biol. 2007;93:195–211.
  • Curra KP, Mourad PD, Khokhlova VA, et al. Numerical simulations of heating patterns and tissue temperature response due to high-intensity focused ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000;47:1077–1089.
  • Filonenko EA, Khokhlova VA. Effect of acoustic nonlinearity on heating of biological tissue by high-intensity focused ultrasound. Acoust Phys. 2001;47:468–475.
  • Solovchuk M, Sheu TW, Thiriet M. Multiphysics modeling of liver tumor ablation by high intensity focused ultrasound. Commun Comput Phys. 2015;x:1–22.
  • Samanipour R, Maerefat M, Nejad HR. Numerical study of the effect of ultrasound frequency on temperature distribution in layered tissue. J Therm Biol. 2013;38:287–293.
  • Leighton TG. What is ultrasound? Prog Biophys Mol Biol. 2007;93:3–83.
  • Zhou Y. Principles and Applications of Therapeutic Ultrasound in Healthcare, New York: CRC Press; 2015.
  • Hamilton MF, Morfey CL. Model equations in nonlinear acoustics. San Diego (CA): Academic Press; 1998.
  • Farny CH, Glynn Holt R, Roy RA. The correlation between bubble-enhanced HIFU heating and cavitation power. IEEE Trans Biomed Eng. 2010;57:175–184.
  • Hill CR, Bamber JC, Haar G. Ter Physical Principles of Medical Ultrasound. Chichester (UK): Wiley; 2004.
  • Solovchuk MA, Sheu TW, Thiriet M. Image-based computational model for focused ultrasound ablation of liver tumor. J Comput Surg. 2014;1:4.
  • Arkin H, Xu LX, Holmes KR. Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans Biomed Eng. 1994;41:97–107.
  • Hallaj IM, Cleveland RO. FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound. J Acoust Soc Am. 1999;105:L7.
  • Pierce AD. Acoustics: an introduction to its physical principles and applications. New York (NY): Acoustical Society of America; 1991.
  • Tempany CMC, McDannold NJ, Hynynen K, et al. Focused ultrasound surgery in oncology: overview and principles. Radiology. 2011;259:39–56.
  • Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787–800.
  • Damianou C, Hynynen K, Fan X. Application of the thermal dose concept for predicting the necrosed tissue volume during ultrasound surgery. Proc IEEE Ultrason Symp D. 1993;2:1199–1202.
  • Hamilton MF. Comparison of three transient solutions for the axial pressure in a focused sound beam. J Acoust Soc Am. 1992;92:527–532.
  • Doinikov AA, Novell A, Calmon P, et al. Simulations and measurements of 3-D ultrasonic fields radiated by phased-array transducers using the westervelt equation. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:1470–1477.
  • Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys. 1994;114:185–200.
  • Pinton GF, Dahl J, Rosenzweig S, et al. A heterogeneous nonlinear attenuating full- wave model of ultrasound. IEEE Trans Ultrason Ferroelect Freq Contr. 2009;56:474–488.
  • Doinikov A, Novell A, Bouakaz A, et al. Simulation of temperature fields in soft tissue caused by nonlinear propagation of ultrasound pulses. Chicago (IL): IEEE Int Ultrason Symp IUS. 2014;1179–1181.
  • Doinikov A, Novell A, Bouakaz A, et al. The Westervelt equation for nonlinear propagation: Numerical simulations and experimental validation of ultrasonic fields produced by array transducers. IEEE Int Ultrason Symp IUS. 2013;12:608–610.
  • Ebbini ES, Ter Haar G. Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperth. 2015;31:77–89.
  • Fan X, Hynynen K. Ultrasound surgery using multiple sonications-treatment time considerations. Ultrasound Med Biol. 1996;22:471–482.
  • Zhou Y, Kargl SG, Hwang JH. The Effect of the Scanning Pathway in High-Intensity Focused Ultrasound Therapy on Lesion Production. Ultrasound Med Biol. 2011;37:1457–1468.
  • Malinen M, Huttunen T, Kaipio JP, et al. Scanning path optimization for ultrasound surgery. Phys Med Biol. 2005;50:3473–3490.
  • Cheng TY, Ju KC, Ho CS, et al. Split-focused ultrasound transducer with multidirectional heating for breast tumor thermal surgery. Med Phys. 2008;35:1387–1397.
  • Zhou Y, Kargl SG, Hwang JH, et al. Producing uniform lesion pattern in HIFU ablation. Amer Institute Phys (AIP). 2009;91:1–6.