2,144
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Real-time monitoring radiofrequency ablation using tree-based ensemble learning models

, ORCID Icon, &
Pages 427-436 | Received 03 Oct 2018, Accepted 17 Feb 2019, Published online: 02 Apr 2019

References

  • Shah DR, Green S, Elliot A, et al. Current oncologic applications of radiofrequency ablation therapies. WJGO. 2012;5:71.
  • Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol. 2009;38:135–143.
  • Tateishi R, Shiina S, Teratani T, et al. Percutaneous radiofrequency ablation for hepatocellular carcinoma: an analysis of 1000 cases. Cancer. 2005;103:1201–1209.
  • Shiina S, Teratani T, Obi S, et al. A randomized controlled trial of radiofrequency ablation with ethanol injection for small hepatocellular carcinoma. Gastroenterology. 2005;129:122–130.
  • Dupuy DE, Zagoria RJ, Akerley W, et al. Percutaneous radiofrequency ablation of malignancies in the lung. Ajr Am J Roentgenol. 2000;174:57–59.
  • Kunkle DA, Uzzo RG. Cryoablation or radiofrequency ablation of the small renal mass: a meta-analysis. Cancer. 2008;113:2671–2680.
  • Abdalla EK, Vauthey JN, Ellis LM, et al. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg. 2004;239:818.
  • Wi H, McEwan AL, Lam V, et al. Real-time conductivity imaging of temperature and tissue property changes during radiofrequency ablation: an ex vivo model using weighted frequency difference. Bioelectromagnetics. 2015;36:277–286.
  • Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14(3):199–208.
  • Lu DS, Raman SS, Vodopich DJ, et al. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the “heat sink effect”. Ajr Am J Roentgenol. 2002;178:47–51.
  • Sliwa JW, Ma Z, Goetz JP, et al. Apparatus and methods for acoustic monitoring of ablation procedures. United States patent application US 12/636,837. 2010 Jul 1.
  • Zhou Z, Wu S, Wang CY, et al. Monitoring radiofrequency ablation using real-time ultrasound nakagami imaging combined with frequency and temporal compounding techniques. PLoS One. 2015;10:e0118030.
  • Liu YD, Li Q, Zhou Z, et al. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation. PloS One. 2017;12:e0182457.
  • Pang GA, Bay E, Deán-Ben XL, et al. Three-dimensional optoacoustic monitoring of lesion formation in real time during radiofrequency catheter ablation. J Cardiovasc Electrophysiol. 2015;26:339–345.
  • Larina IV, Larin KV, Esenaliev RO. Real-time optoacoustic monitoring of temperature in tissues. J Phys D: Appl Phys. 2005;38:2633.
  • Holder DS, editor. Electrical impedance tomography: methods, history and applications. Boca Raton (FL): CRC Press; 2004.
  • Wi H, McEwan AL, Lam V, et al. Real-time conductivity imaging of temperature and tissue property changes during radiofrequency ablation: an ex vivo model using weighted frequency difference. Bioelectromagnetics. 2015;36(4):277–286.
  • Cherepenin VA, Karpov AY, Korjenevsky AV, et al. Three-dimensional EIT imaging of breast tissues: system design and clinical testing. IEEE Trans Med Imag. 2002;21(6):662–667.
  • Javaherian A, Soleimani M, Moeller K. A fast time-difference inverse solver for 3D EIT with application to lung imaging. Med Biol Eng Comput. 2016;54(8):1243–1255.
  • Chang I. Finite element analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity. Biomed Eng Online. 2003;2:12.
  • Martin S, Choi CT. A post-processing method for three-dimensional electrical impedance tomography. Sci Rep. 2017;7(1):7212.
  • Magoulas GD, Prentza A. Machine learning in medical applications. Advanced course on artificial intelligence; Berlin, Heidelberg: Springer; 1999. p. 300–307.
  • Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical engineering research-commentary. Biomed Eng Online. 2014;13:94.
  • Durichen R, Pimentel MA, Clifton L, et al. Multi-task Gaussian process models for biomedical applications. IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI); 2014 Jun 1; Valencia, Spain. p. 492–495.
  • Yu W, Liu T, Valdez R, et al. Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak. 2010;10:16.
  • Son YJ, Kim HG, Kim EH, et al. Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc Inform Res. 2010;16:253–259.
  • Shaikhina T, Lowe D, Daga S, et al. Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomed Signal Process Control. 2017 (In press).
  • Khan J, Wei JS, Ringner M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med. 2001;7:673.
  • Tan YJ, Sim KS, Ting FF. Breast cancer detection using convolutional neural networks for mammogram imaging system. 2017 International Conference on Robotics, Automation and Sciences (ICORAS); 2017 Nov 27; Melaka, Malaysia. p. 1–5.
  • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115.
  • Wang YC, Chan TC, Sahakian AV. Real-time estimation of lesion depth and control of radiofrequency ablation within ex vivo animal tissues using a neural network. Int J Hyperther. 2018;34(7):1104–1113.
  • Goldberg SN, Gazelle GS, Dawson SL, et al. Tissue ablation with radiofrequency: effect of probe size, gauge, duration, and temperature on lesion volume. Acad Radiol. 1995;2:399–404.
  • Zhang C, Ma Y, editor. Ensemble machine learning: methods and applications. New York (NY): Springer Science & Business Media; 2012.
  • Schapire RE. The boosting approach to machine learning: an overview. In: Denison DD, Hansen MH, Holmes CC, editors. Nonlinear estimation and classification. New York (NY): Springer; 2003. p. 149–171.
  • Loh WY. Fifty years of classification and regression trees. Int Stat Rev. 2014;82:329–348.
  • Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning. 1999;36:105–139.