1,723
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Predictive value of SAR based quality indicators for head and neck hyperthermia treatment quality

ORCID Icon, ORCID Icon, , , &
Pages 455-464 | Received 07 May 2018, Accepted 24 Feb 2019, Published online: 11 Apr 2019

References

  • Franckena M, Stalpers LJA, Koper PCM, et al. Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionally advanced cervix cancer: an update of the Dutch Deep Hyperthermia Trial. Int J Radiat Oncol Biol Phys. 2008;70:1176–1182.
  • Thrall DE, Rosner GL, Azuma C, et al. Using units of CEM 43C T90, local hyperthermia thermal dose can be delivered as prescribed. Int J Hypertherm. 2000;16(5):415–428.
  • Nakagawa Y, Kajihara A, Takahashi A, et al. BRCA2 protects mammalian cells from heat shock. Int JHypertherm. 2018;34(6):795–801.
  • Sherar M, Liu F-F, Pintilie M, et al. Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase iii trial. Int J Radiat Oncol Biol Phys. 1997;39:371–380.
  • Thrall DE, LaRue SM, Yu D, et al. Thermal dose is related to duration of local control in canine sarcomas treated with thermoradiotherapy. Clin Cancer Res. 2005;11:5206–5214.
  • van der Horst A, Versteijne E, Besselink MG, et al. The clinical benefit of hyperthermia in pancreatic cancer: a systematic review. Int J Hypertherm. 2018;34(7):969–979.
  • Franckena M, Fatehi D, Bruijne M. d, et al. Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer. 2009;45:1969–1978.
  • van Leeuwen CM, Oei AL, Chin KW, et al. A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer. Radiat Oncol. 2017;12:75.
  • Paulides MM, Verduijn GM, Van Holthe N. Status quo and directions in deep head and neck hyperthermia. Radiat Oncol. 2016;11:21.
  • de Bruijne M, van der Holt B, van Rhoon GC, et al. Evaluation of CEM43 degrees CT90 thermal dose in superficial hyperthermia: a retrospective analysis. Strahlenther Onkol. 2010;186:436–443.
  • van Rhoon GC. Is CEM43 still a relevant dose paramenter for hyperthermia treatment monitoring? Int J Hypertherm. 2016;32:50–62.
  • Rau B, Gaestel M, Wust P, et al. Preoperative treatment of rectal cancer with radiation, chemotherapy and hyperthermia: analysis of treatment efficacy and heat-shock response. Radiat Res. 1999;151:479–488.
  • Canters RAM, Wust P, Bakker JF, et al. A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. Int J Hyperthermia. 2009;25:593–608.
  • Lee HK, Antell AG, Perez CA, et al. Superficial hyperthermia and irradiation for recurrent breast carcinoma of the chest wall: Prognostic factors in 196 tumors. Int J Radiat Oncol Biol Phys. 1998;40:365–375.
  • Paulides MM, Stauffer PR, Neufeld E, et al. Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia. 2013;29:346–357.
  • Crezee J, Van Haaren PMA, Westendorp H, et al. Improving locoregional hyperthermia delivery using the 3-D controlled amc-8 phased array hyperthermia system: a preclinical study. Int J Hypertherm. 2009;25:581–592.
  • Canters RAM, Paulides MM, Franckena M, et al. Benefit of replacing the sigma-60 by the sigma-eye applicator. a monte carlo-based uncertainty analysis. Strahlenther Onkol. 2013;189:74–80.
  • Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Computat. 1997;1:67–82.
  • de Bruijne M, Samaras T, Bakker JF, et al. Effects of waterbolus size, shape and configuration on the SAR distribution pattern of the Lucite cone applicator. Int J Hyperthermia. 2006;22:15–28.
  • Seebass M, Beck R, Gellermann J, et al. Electromagnetic phased arrays for regional hyperthermia: optimal frequency and antenna arrangement. Int J Hypertherm. 2001;17:321–336.
  • Iero DA, Crocco L, Isernia T. Thermal and microwave constrained focusing for patient-specific breast cancer hyperthermia: A robustness assessment. IEEE Trans Antennas Propagat. 2014;62:814–821.
  • Verhaart RF, Verduijn GM, Fortunati V, et al. Accurate 3D temperature dosimetry during hyperthermia therapy by combining invasive measurements and patient-specific simulations. Int J Hyperthermia. 2015;31:686–692.
  • Togni P, Rijnen Z, Numan WCM, et al. Electromagnetic redesign of the HYPERcollar3D. applicator: toward improved deep local head-and-neck hyperthermia. Phys Med Biol. 2013;58:5997–6009.
  • Bucci OM, Gennarelli C, Savarese C. Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples. IEEE Trans Antennas Propagat. 1998;46:351–359.
  • Bellizzi GG, Bevacqua MT, Crocco L, et al. 3-D field intensity shaping via optimized multi-target time reversal. IEEE Trans Antennas Propagat. 2018;66:4380–4385.
  • Bellizzi GG, Iero DAM, Crocco L, et al. 3-D field intensity shaping: the scalar case. IEEE Antennas and Wireless Propagat Lett. 2018;17(3):360–363.
  • Paulides MM, Vossen SHJA, Zwamborn APM, et al. Theoretical investigation into the feasibility to deposit RF energy centrally in the head-and-neck region. Int J Radiat Oncol Biol Phys. 2005;63:634–642.
  • Rijnen Z, Togni P, Roskam R, et al. Quality and comfort in head and neck hyperthermia: A redesign according to clinical experience and simulation studies. Int J Hyperthermia. 2015;31(8):823–830.
  • Fortunati V, Verhaart RF, van der Lijn F, et al. Tissue segmentation of head and neck ct images for treatment planning: A multiatlas approach combined with intensity modeling. Med Phys. 2013;40:071905.
  • Gabriel S, Lau R, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41:2251–2269.
  • Cappiello G, Mc Ginley B, Elahi MA, et al. Differential evolution optimization of the SAR distribution for head and neck hyperthermia. IEEE Trans Biomed Eng. 2017;64:1875–1885.
  • Bellizzi GG, Drizdal T, van Rhoon GC, et al. The potential of constrained SAR focusing for hyperthermia treatment planning: analysis for the head & neck region. Phys Med Biol. 2018;64:015013.
  • Bellizzi GG, Drizdal T, Rhoon GV, et al. Advances in multi-target FOCO for hyperthermia treatment planning: a robustness assessment. 12th European Conference on Antennas and Propagation (EUCAP), 2018, London, England, April 2018.
  • Isernia T, Panariello G. Optimal focusing of scalar fields subject to arbitrary upper bounds. Electron Lett. 1998;34:162–164.
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol Vol. 1. 1948;1:93–122.
  • Kok HP, Korshuize-van Straten L, Bakker A, et al. Online adaptive hyperthermia treatment planning during locoregional heating to suppress treatment-limiting hot spots. Int J Radiat Oncol Biol Phys. 2017;99:1039–1047.
  • Dewhirst MW, Lee C-T, Ashcraft KA. The future of biology in driving the field of hyperthermia. Int J Hypertherm. 2016;32:4–13.
  • Dobiscek Trefná H, Vrba J, Persson M. Evaluation of a patch antenna applicator for time reversal hyperthemia. Int J Hypertherm. 2010;26:185–197.
  • Takook P, Persson M, Gellermann J, et al. Compact self-grounded bow-tie antenna design for an UWB phased-array hyperthermia applicator. Int J Hypertherm. 2017;33(4)387–400.
  • Winter L, Ozerdem C, Hoffmann W, et al. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and rf induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 tesla. PloS One. 2013;8:e61661.
  • Niendorf T, Oezerdem C, Ji Y, et al. Radiative RF antenna arrays for cardiac, brain and thermal magnetic resonance at ultrahigh and extreme magnetic field strengths: Concepts, electromagnetic field simulations and applications. In 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE. p. 1567–1570.