1,192
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Dynamical thermal dose models and dose time-profile effects

, , , , , , & ORCID Icon show all
Pages 720-728 | Received 13 Nov 2018, Accepted 11 Jun 2019, Published online: 29 Jul 2019

References

  • Datta N, Ordóñez SG, Gaipl U, et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41:742–753.
  • Dewhirst MW, Abraham J, Viglianti B. Evolution of thermal dosimetry for application of hyperthermia to treat cancer. In: Ephraim M. Sparrow, John P. Abraham, John M. Gorman, editors Advances in heat transfer. Vol. 47. Elsevier; 2015. p. 397–421.
  • Roti JLR. Cellular responses to hyperthermia (40-46 °C): cell killing and molecular events. Int J Hyperther. 2008;24:3–15.
  • Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787–800.
  • Viglianti BL, Dewhirst MW, Abraham JP, et al. Rationalization of thermal injury quantification methods: application to skin burns. Burns. 2014;40:896–902.
  • Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Develop. 1998;12:3788–3796.
  • Voellmy R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaper. 2004;9:122.
  • Naidu SD, Dinkova-Kostova AT. Regulation of the mammalian heat shock factor 1. Febs J. 2017;284:1606–1627.
  • Sivéry A, Courtade E, Thommen Q. A minimal titration model of the mammalian dynamical heat shock response. Phys Biol. 2016;13:066008.
  • Sriram K, Rodriguez-Fernandez M, Doyle FJ. A detailed modular analysis of heat-shock protein dynamics under acute and chronic stress and its implication in anxiety disorders. PLoS One. 2012;7:e42958.
  • Scheff JD, Stallings JD, Reifman J, et al. Mathematical modeling of the heat-shock response in hela cells. Biophys J. 2015;109:182–193.
  • Gerner EW, Boone R, Connor WG, et al. A transient thermotolerant survival response produced by single thermal doses in hela cells. Cancer Res. 1976;36:1035–1040.
  • Anquez F, El Yazidi-Belkoura I, Randoux S, et al. Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem Photobiol. 2012;88:167–174.
  • Stefani M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim et Biophys Acta. 2004;1739:5–25.
  • Takahashi A, Yamakawa N, Mori E, et al. Development of thermotolerance requires interaction between polymerase-β and heat shock proteins. Cancer Sci. 2008;99:973–978.
  • Jones E, Thrall D, Dewhirst MW, et al. Prospective thermal dosimetry: the key to hyperthermia’s future. Int J Hyperther. 2006;22:247–253.
  • Mayer M, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62:670.
  • Goloudina AR, Demidov ON, Garrido C. Inhibition of hsp70: a challenging anti-cancer strategy. Cancer Lett. 2012;325:117–124.
  • Chatterjee S, Burns T. Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci. 2017;18:1978.
  • Powers MV, Workman P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett. 2007;581:3758–3769.
  • Leu JJ, Pimkina J, Pandey P, et al. Hsp70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol Cancer Res. 2011;9:936–947.
  • Balaburski GM, Julia I, Leu J, et al. A modified hsp70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res. 2013;11:219–229.
  • Miyagawa T, Saito H, Minamiya Y, et al. Inhibition of hsp90 and 70 sensitizes melanoma cells to hyperthermia using ferromagnetic particles with a low curie temperature. Int J Clin Oncol. 2014;19:722–730.
  • Herman TS, Gerner EW, Magun BE, et al. Rate of heating as a determinant of hyperthermic cytotoxicity. Cancer Res. 1981;41:3519–3523.
  • Dewhirst MW, Viglianti B, Lora-Michiels M, et al. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperther. 2003;19:267–294.
  • Dewhirst M, Viglianti BL, Lora-Michiels M, et al. Thermal dose requirement for tissue effect: experimental and clinical findings. In: thermal treatment of tissue: energy delivery and assessment II. Int Soc Optics Photonics. 2003;4954:37–58.
  • Dewhirst M. Thermal dosimetry. In: Seegenschmiedt MH, Fessenden P, Vernon CC, editors. Thermoradiotherapy and thermochemotherapy. Philadelphia/Hamburg: Springer; 1995. p. 123–136.
  • Lindegaard JC, Overgaard J. Factors of importance for the development of the step-down heating effect in a c3h mammary carcinoma in vivo. Int J Hyperther. 1987;3:79–91.
  • Spiro IJ, Sapareto SA, Raaphorst GP, et al. The effect of chronic and acute heat conditioning on the development of thermal tolerance. Int J Radiat Oncol Biol Phys. 1982;8:53–58.
  • Henle KJ. Sensitization to hyperthermia below 43 c induced in chinese hamster ovary cells by step-down heating. J Natl Cancer Inst. 1980;64:1479–1483.
  • Van Rhoon GC, Samaras T, Yarmolenko PS, et al. Cem43 c thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol. 2013;23:2215–2227.
  • Bhuyan BK. Kinetics of cell kill by hyperthermia. Cancer Res. 1979;39:2277–2284. Part