1,345
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Feasibility and relevance of discrete vasculature modeling in routine hyperthermia treatment planning

ORCID Icon, , , , , ORCID Icon, , & show all
Pages 800-810 | Received 20 Sep 2018, Accepted 05 Jul 2019, Published online: 27 Aug 2019

References

  • Cihoric N, Tsikkinis A, van Rhoon G, et al. Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperthermia. 2015;31:609–614.
  • Amichetti M, Romano M, Busana L, et al. Hyperfractionated radiation in combination with local hyperthermia in the treatment of advanced squamous cell carcinoma of the head and neck: a phase I–II study. Radiother Oncol. 1997;45:155–158.
  • Valdagni R, Amichetti M. Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymphnodes in stage IV head and neck patients. Int J Radiat Oncol Biol Phys. 1994;28:163–169.
  • Huilgol NG, Gupta S, Dixit R. Chemoradiation with hyperthermia in the treatment of head and neck cancer. Int J Hyperthermia. 2010;26:21–25.
  • Hua Y, Ma S, Fu Z, et al. Intracavity hyperthermia in nasopharyngeal cancer: a phase III clinical study. Int J Hyperthermia. 2011;27:180–186.
  • Franckena M, Fatehi D, de Bruijne M, et al. Hyperthermia dose–effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer. 2009;45:1969–1978.
  • Jones EL, Oleson JR, Prosnitz LR, et al. Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol. 2005;23:3079–3085.
  • Thrall DE, Page RL, Dewhirst MW, et al. Temperature measurements in normal and tumor tissue of dogs undergoing whole body hyperthermia. Cancer Res. 1986;46:6229–6235.
  • Paulides MM, Bakker JF, Neufeld E, et al. The HYPERcollar: a novel applicator for hyperthermia in the head and neck. Int J Hyperthermia. 2007;23:567–576.
  • Paulides MM, Stauffer PR, Neufeld E, et al. Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia. 2013;29:346–357.
  • Kok HP, Kotte A, Crezee J. Planning, optimisation and evaluation of hyperthermia treatments. Int J Hyperthermia. 2017;33:593–607.
  • Fortunati V, Verhaart RF, van der Lijn F, et al. Tissue segmentation of head and neck CT images for treatment planning: a multiatlas approach combined with intensity modeling. Med Phys. 2013;40:071905.
  • Fortunati V, Verhaart RF, Niessen WJ, et al. Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning. Phys Med Biol. 2015;60:6547–6562.
  • Verhaart RF, Fortunati V, Verduijn GM, et al. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation. Radiother Oncol. 2014;111:158–163.
  • Verhaart RF, Verduijn GM, Fortunati V, et al. Accurate 3D temperature dosimetry during hyperthermia therapy by combining invasive measurements and patient-specific simulations. Int J Hyperthermia. 2015;31:686–692.
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1:93–122.
  • Crezee J, Lagendijk J. Temperature uniformity during hyperthermia: the impact of large vessels. Phys Med Biol. 1992;37:1321–1337.
  • Van den Berg CAT, Van de Kamer JB, De Leeuw AAC, et al. Towards patient specific thermal modelling of the prostate. Phys Med Biol. 2006;51:809–825.
  • Mitchell JW, Myers GE. An analytical model of the counter-current heat exchange phenomena. Biophys J. 1968;8:897–911.
  • Lagendijk J. The influence of bloodflow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol. 1982;27:17–23.
  • Kolios MC, Sherar MD, Hunt JW. Large blood vessel cooling in heated tissues: a numerical study. Phys Med Biol. 1995;40:477–494.
  • Zhu L, Xu LX, He Q, et al. A new fundamental bioheat equation for muscle tissue-part II: temperature of SAV vessels. J Biomech Eng. 2002;124:121–132.
  • Kok HP, Gellermann J, van den Berg CAT, et al. Thermal modelling using discrete vasculature for thermal therapy: a review. Int J Hyperthermia. 2013;29:336–345.
  • Kotte A, van Leeuwen G, de Bree J, et al. A description of discrete vessel segments in thermal modelling of tissues. Phys Med Biol. 1996;41:865–884.
  • Kotte A, Van Leeuwen GMJ, Lagendijk J. Modelling the thermal impact of a discrete vessel tree. Phys Med Biol. 1999;44:57–74.
  • Van Leeuwen GMJ, Kotte A, De Bree J, et al. Accuracy of geometrical modelling of heat transfer from tissue to blood vessels. Phys Med Biol. 1997;42:1451–1460.
  • Van Leeuwen GMJ, Kotte A, Crezee J, et al. Tests of the geometrical description of blood vessels in a thermal model using counter-current geometries. Phys Med Biol. 1997;42:1515–1532.
  • Wardlaw JM, Chappell FM, Best JJK, et al. Non-invasive imaging compared with intra-arterial angiography in the diagnosis of symptomatic carotid stenosis: a meta-analysis. Lancet. 2006;367:1503–1512.
  • Kumamaru KK, Hoppel BE, Mather RT, et al. CT angiography: current technology and clinical use. Radiol Clin North Am. 2010;48:213–235.
  • Verhaart RF, Fortunati V, Verduijn GM, et al. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: a comparison of CT and CT-MRI based tissue segmentation on simulated temperature . Med Phys. 2014;41:123302–11.
  • Mendrik AM, Vonken E-J, Rutten A, et al. Noise reduction in computed tomography scans using 3-D anisotropic hybrid diffusion with continuous switch. IEEE Trans Med Imaging. 2009;28:1585–1594.
  • Larsen CT, Iglesias JE, Van Leemput K. N3 bias field correction explained as a Bayesian modeling method. Bayesian and graphical models for biomedical imaging. Springer; 2014. p. 1–12.
  • Nyúl LG, Udupa JK, editors. New variants of a method of MRI scale normalization. Biennial International Conference on Information Processing in Medical Imaging. Visegrád: Springer; 1999.
  • Fortunati V, Verhaart RF, Angeloni F, et al. Feasibility of multimodal deformable registration for head and neck tumor treatment planning. Int J Radiat Oncol Biol Phys. 2014;90:85–93.
  • Fortunati V, Verhaart RF, van der Lijn F, et al. editors. Hyperthermia critical tissues automatic segmentation of head and neck CT images using atlas registration and graph cuts. 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI). Barcelona: IEEE; 2012.
  • Frangi AF, Niessen WJ, Vincken KL, et al., editors. Multiscale vessel enhancement filtering. International Conference on Medical Image Computing and Computer-Assisted Intervention; 1998. Cambridge (MA): Springer.
  • Selle D, Preim B, Schenk A, et al. Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging. 2002;21:1344–1357.
  • Rijnen Z, Bakker JF, Canters RAM, et al. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int J Hyperthermia. 2013;29:181–193.
  • Gabriel C, Gabriel S, Corthout YE. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41:2231–2249.
  • Hasgall PA, Di Gennaro F, Baumgartner C, et al. IT’IS database for thermal and electromagnetic parameters of biological tissues. Version 4.0; 2018. [cited 2018 May 15] Available from: www.itis.ethz.ch/database/
  • Bakker JF, Paulides MM, Neufeld E, et al. Children and adults exposed to low-frequency magnetic fields at the ICNIRP reference levels: theoretical assessment of the induced electric fields. Phys Med Biol. 2012;57:1815–1829.
  • Ford MD, Alperin N, Lee SH, et al. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol Meas. 2005;26:477–488.
  • Murray CD. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci. 1926;12:207–214.
  • van Lier AL, Kotte A, Raaymakers BW, et al. Radiofrequency heating induced by 7T head MRI: thermal assessment using discrete vasculature or Pennes' bioheat equation. J Magn Reson Imaging. 2012;35:795–803.
  • Flyckt VMM, Raaymakers BW, Lagendijk J. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels. Phys Med Biol. 2006;51:5007–5021.
  • Kok HP, Van den Berg CAT, Bel A, et al. Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks. Med Phys. 2013;40:103303.
  • Van Leeuwen GMJ, Kotte A, Raaymakers BW, et al. Temperature simulations in tissue with a realistic computer generated vessel network. Phys Med Biol. 2000;45:1035–1049.
  • Lemons DE, Chien S, Crawshaw LI, et al. Significance of vessel size and type in vascular heat transfer. Am J Physiol-Regul Integr Comp Physiol. 1987;253:R128–R135.
  • Raaymakers BW, Crezee J, Lagendijk J. Modelling individual temperature profiles from an isolated perfused bovine tongue. Phys Med Biol. 2000;45:765–780.
  • Verduijn GM, de Wee EM, Rijnen Z, et al. Deep hyperthermia with the HYPERcollar system combined with irradiation for advanced head and neck carcinoma – a feasibility study. Int J Hyperthermia. 2018;34:994–1001.
  • van der Zee J, Peer-Valstar JN, Rietveld PJM, et al. Practical limitations of interstitial thermometry during deep hyperthermia. Int J Radiat Oncol Biol Phys. 1998;40:1205–1212.
  • Kroesen M, Mulder HT, van Holthe N, et al. The effect of the time interval between radiation and hyperthermia on clinical outcome in 400 locally advanced cervical carcinoma patients. Front Oncol. 2019;9:134.
  • Crezee J, van Leeuwen CM, Oei AL, et al. Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiat Oncol. 2016;11:14.