1,903
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

A tissue-mimicking prostate phantom for 980 nm laser interstitial thermal therapy

ORCID Icon, , , , , , & show all
Pages 992-1001 | Received 14 May 2019, Accepted 14 Aug 2019, Published online: 23 Sep 2019

References

  • Natarajan S, Raman S, Priester AM, et al. Focal laser ablation of prostate cancer: phase i clinical trial. J Urol. 2016;196:68–75.
  • Eggener SE, Yousuf A, Watson S, et al. Phase II evaluation of MRI-guided focal laser ablation of prostate cancer. J Urol. 2016;196:1670–1675.
  • Oto A, Sethi I, Karczmar G, et al. MR imaging – guided focal laser ablation for prostate cancer: Phase 1 trial. Radiology. 2013;267:932–940.
  • Lepor H, Llukani E, Sperling D, et al. Complications, recovery, and early functional outcomes and oncologic control following in-bore focal laser ablation of prostate cancer. Eur Urol. 2015;68:924–926.
  • Peters RD, Chan E, Trachtenberg J, et al. Magnetic resonance thermometry for predicting thermal damage: an application of interstitial laser coagulation in an in vivo canine prostate model. Magn Reson Med. 2000;44:873–883.
  • Stafford RJ, Shetty A, Elliott AM, et al. Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol. 2010;184:1514–1520.
  • van Nimwegen SA, L'Eplattenier HF, Rem AI, et al. Nd:YAG surgical laser effects in canine prostate tissue: temperature and damage distribution. Phys Med Biol. 2009;54:29–44.
  • Seitz M, Reich O, Gratzke C, et al. High-power diode laser at 980 nm for the treatment of benign prostatic hyperplasia: ex vivo investigations on porcine kidneys and human cadaver prostates. Lasers Med Sci. 2009;24:172–178.
  • Bomers JGR, Cornel EB, Futterer JJ, et al. MRI-guided focal laser ablation for prostate cancer followed by radical prostatectomy: correlation of treatment effects with imaging. World J Urol. 2017;35:703–711.
  • Lindner U, Weersink RA, Haider MA, et al. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J Urol. 2009;182:1371–1377.
  • Natarajan S, Jones TA, Priester AM, et al. Focal laser ablation of prostate cancer: feasibility of magnetic resonance imaging-ultrasound fusion for guidance. J Urol. 2017;198:839–847.
  • Jaywant S, Wilson B, Patterson M, et al. Temperature-dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure. Laser-Tissue Interact IV. 1993;1882:218–229.
  • Nau WH, Roselli RJ, Milam DF. Measurement of thermal effects on the optical properties of prostate tissue at wavelengths of 1,064 and 633 nm. Lasers Surg Med. 1999;24(1):38–47.
  • Skinner MG, Everts S, Reid AD, et al. Changes in optical properties of ex vivo rat prostate due to heating. Phys Med Biol. 2000;45(5):1375–1386.
  • Niemz MH. Laser-tissue interactions: fundamentals and aplications. 3rd ed. Berlin: Springer; 2007.
  • Nikfarjam M, Malcontenti-Wilson C, Christophi C. Comparison of 980- and 1064-nm wavelengths for interstitial laser thermotherapy of the liver. Photomed Laser Surg. 2005;23(3):284–288.
  • Jiang SC, Zhang XX. Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis. Lasers Med Sci. 2005;20:122–131.
  • Negussie AH, Partanen A, Mikhail AS, et al. Thermochromic tissue-mimicking phantom for optimisation of thermal tumour ablation. Int J Hyperthermia. 2016;32:239–243.
  • Bu-Lin Z, Bing H, Sheng-Li K, et al. A polyacrylamide gel phantom for radiofrequency ablation. Int J Hyperthermia. 2008;24:568–576.
  • McDonald M, Lochhead S, Chopra R, et al. Multi-modality tissue-mimicking phantom for thermal therapy. Phys Med Biol. 2004;49:2767–2778.
  • Bouchard LS, Bronskill MJ. Magnetic resonance imaging of thermal coagulation effects in a phantom for calibrating thermal therapy devices. Med Phys. 2000;27:1141–1145.
  • Hills BP, Takacs SF, Belton PS. The effects of proteins on the proton N.M.R. transverse relaxation time of water II. Protein aggregation. Mol Phys. 1989;67:919–937.
  • Iizuka MN, Sherar MD, Vitkin IA. Optical phantom materials for near infrared laser photocoagulation studies. Lasers Surg Med. 1999;25:159–169.
  • Takada J, Honda N, Hazama H, et al. Ex vivo efficacy evaluation of laser vaporization for treatment of benign prostatic hyperplasia using a 300-W high-power laser diode with a wavelength of 980 nm. Laser Ther. 2014;23:165–172.
  • Roggan A, Albrecht HJ, Doerschel K, et al. Experimental setup and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330-1100 nm. Proc. SPIE, Laser Interact Hard Soft Tissue II. 1995;2323:21–36.
  • Flock ST, Jacques SL, Wilson BC, et al. Optical properties of intralipid: a phantom medium for light propagation studies. Lasers Surg Med. 1992;12:510–519.
  • van Staveren HJ, Moes CJM, van Marie J, et al. Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm. Appl Opt. 1991;30:4507–4514.
  • Welch AJ, van Germert MJC, Van Gemert M. Optical-thermal response of laser-irradiated tissue. New York: Springer; 2011.
  • Shrake A, Ross PD. Origins and consequences of ligand-induced multiphasic thermal protein denaturation. Biopolymers. 1992;32:925–940.
  • Ahmad N, Qasim MA. Fatty acid binding to bovine serum albumin prevents formation of intermediate during denaturation. Eur J Biochem. 1995;227:563–565.
  • Cubeddu R, Pifferi A, Taroni P, et al. A solid tissue phantom for photon migration studies. Phys Med Biol. 1997;42:1971–1979.
  • Ninni P, Di Martelli F, Zaccanti G. Effect of dependent scattering on the optical properties of Intralipid tissue phantoms. Biomed Opt Express. 2011;2:2265–2278.
  • Royston DD, Poston RS, Prahl SA. Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm. J Biomed Opt. 1996;1:110–116.
  • Prahl SA. Everything I think you should know about inverse adding-doubling. Oregon Med Laser Center, St Vincent Hosp. 2011:1–74.
  • Geoghegan R, Priester A, Lieu P, et al. Determining Optimal Exposure Duration for Focal Laser Ablation of the Prostate. Proceedings of the 31st Annual Meeting of the Engineering & Urology Society; 2016 May 7; San Diego, CA; 2016
  • Jiang SC, Zhang XX. Effects of dynamic changes of tissue properties during laser-induced interstitial thermotherapy (LITT). Lasers Med Sci. 2005;19:197–202.
  • Dabbagh A, Abdullah BJJ, Kasim NHA, et al. Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application. Int J Hyperth. 2014;30:66–74.