4,559
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia

, , , , , , , , & show all
Pages 1-14 | Received 12 Aug 2019, Accepted 10 Dec 2019, Published online: 09 Jan 2020

References

  • Johannsen M, Gneveckow U, Thiesen B, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52(6):1653–1662.
  • Marchal S, Hor AE, Millard M, et al. Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs. 2015;75(14):1601–1611.
  • Kozissnik B, Bohorquez AC, Dobson J, et al. Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperthermia. 2013;29(8):706–714.
  • Ivkov R. Magnetic nanoparticle hyperthermia: a new frontier in biology and medicine? Int J Hyperthermia. 2013;29(8):703–705.
  • Dennis CL, Ivkov R. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2013;29(8):715–729.
  • Dennis CL, Jackson AJ, Borchers JA, et al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 2009;20(39):395103.
  • Attaluri A, Kandala SK, Zhou H, et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: a study in mouse models of human prostate cancer. Int J Hyperthermia. 2015;31(4):359–374.
  • Attaluri A, Seshadri M, Mirpour S, et al. Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: a feasibility study. Int J Hyperthermia. 2016;32(5):543–557.
  • Oliveira TR, Stauffer PR, Lee C-T, et al. Magnetic fluid hyperthermia for bladder cancer: a preclinical dosimetry study. Int. J. Hyperthermia. 2013;29(8):835–844.
  • Barnes FS, Greenebaum B. Biological and medical aspects of electromagnetic fields. Boca Raton (FL): CRC Press, Taylor & Francis Group; 2006.
  • Greenebaum B, Barnes FS. Bioengineering and biophysical aspects of electromagnetic fields. Boca Raton (FL): CRC Press, Taylor & Francis Group; 2006.
  • Nemkov V, Ruffini R, Goldstein R, et al. Magnetic field generating inductor for cancer hyperthermia research. Compel. 2011;30(5):1626–1636.
  • Bordelon D, Goldstein R, Nemkov V, et al. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans Magn. 2012;48(1):47–52.
  • Baronzio GF, Hager ED. Hyperthermia in cancer treatment: a primer. New York (NY): Landes Biosciences and Springer Science+Business Media, LLC; 2008.
  • Solazzo SA, Liu Z, Lobo SM, et al. Radiofrequency ablation: importance of background tissue electrical conductivity – An agar phantom and computer modeling study. Radiology. 2005;236(2):495–502.
  • Maier-Hauff K, Rothe R, Scholz R, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007;81(1):53–60.
  • Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–324.
  • Thompson MT. Simple models and measurements of magnetically induced heating effects in ferromagnetic fluids. IEEE Trans Magn. 1998;34(5):3755–3764.
  • Dughiero F, Corazza S. Numerical simulation of thermal deposition with induction heating used for oncological hyperthermia treatment. Med Biol Eng Comput. 2005;43(1):40–46.
  • Candeo A, Dughiero F. Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles. IEEE Trans Magn. 2009;45(3):1658–1661.
  • Dennis CL, Krycka KL, Borchers JA, et al. Internal magnetic structure of nanoparticles dominates time-dependent relaxation processes in a magnetic field. Adv Funct Mater. 2015;25(27):4300–4311.
  • Atkinson WJ, Brezovich IA, Chakraborty DP. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng. 1984;31(1):70–75.
  • Nyenhuis JA, Mouchawar GA, Bourland JD, et al. Energy considerations in the magnetic (eddy-current) stimulation of tissues. IEEE Trans Magn. 1991;27(1):680–687.
  • Wust P, Gneveckow U, Johannsen M, et al. Magnetic nanoparticles for interstitial thermotherapy–feasibility, tolerance and achieved temperatures. Int J Hyperthermia. 2006;22(8):673–685.
  • Stauffer PR, Cetas TC, Jones RC. Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep-seated tumours. IEEE Trans Biomed Eng. 1984;31:235–251.
  • Lin JC, Bernardi P. Computational methods for predicting field intensity and temperature change. In: Barnes FS, Greenebaum B, editors. Bioengineering and biophysical aspects of electromagnetic fields. 3rd ed. Boca Raton (FL): CRC Press, Taylor & Francis Group; 2007. p. 293–380.
  • Liu F, Zhao H, Crozier S. On the induced electric field gradients in the human body for magnetic stimulation by gradient coils in MRI. IEEE Trans Biomed Eng. 2003;50(7):804–815.
  • Wang Q, Deng ZS, Liu J. Theoretical evaluations of magnetic nanoparticle-enhanced heating on tumor embedded with large blood vessels during hyperthermia. J Nanopart Res. 2012;14:974–984.
  • Szasz A, Szasz O, Szasz N. 2006 Physical background and technical realizations of hyperthermia. In: Baronzio GF, Hager ED, editors. Hyperthermia in cancer treatment: a primer. New York (NY): Landes Bioscience and Springer; 2006. p. 27–52.
  • Black DR. Thermoregulation in the presence of radio frequency fields. In Barnes FS, Greenebaum B, eds. Biological and medical aspects of electromagnetic fields. 3rd ed. Boca Raton (FL): CRC Press, Taylor & Francis Group; 2006. p. 215–226.
  • Cerchiari U. Hyperthermia, physics, vector potential, electromagnetic heating: a primer. In Baronzio GF, Hager ED eds. Hyperthermia in cancer treatment: a primer. New York (NY): Landes Bioscience and Springer; 2006. p. 3–18.
  • Polk C. Introduction. In Barnes FS, Greenebaum B, editors. Biological and medical aspects of electromagnetic fields. 3rd ed. Boca Raton (FL): CRC Press, Taylor & Francis Group; 2006. p. xiii–xxvi.
  • Stauffer PR, Sneed PK, Hashemi H, et al. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants. IEEE Trans Biomed Eng. 1994;41(1):17–28.
  • Ellinger DC, Chute FS, Vermeulen FE. Evaluation of a semi-cylindrical solenoid as an applicator for radio-frequency hyperthermia. IEEE Trans Biomed Eng. 1989;36(10):987–994.
  • Tasci TO, Vargel I, Arat A, et al. Focused RF hyperthermia using magnetic fluids. Med Phys. 2009;36(5):1906–1912.
  • Ivkov R, DeNardo SJ, Daum W, et al. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin Cancer Res. 2005;11(19):7093s–7103s.
  • Trakic A, Liu F, Crozier S. Transient temperature rise in a mouse due to low-frequency regional hyperthermia. Phys Med Biol. 2006;51(7):1673–1691.
  • Gneveckow U, Jordan A, Scholz R, et al. Description and characterization of the novel hyperthermia- and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia. Med Phys. 2004;31(6):1444–1451.
  • Jordan A, Wust P, Scholz R, et al. Magnetic fluid hyperthermia (MFH). In: Hafeli U, Zborowski M, Schutt W, editors. Scientific and clinical applications of magnetic carriers. New York (NY): Plenum Press; 1997. p. 569–595.
  • Kumar A, Attaluri A, Mallipudi R, et al. Method to reduce non-specific tissue heating of small animals in solenoid coils. Int J Hyperthermia. 2013;29(2):106–120.
  • Kut C, Zhang Y, Hedayati M, et al. Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice. Nanomedicine. 2012;7(11):1697–1711.
  • Dewhirst MW, Jones E, Samulski T, et al. Hyperthermia. In: Kufe DW, Pollock RE, Weichselbaum RE, Bast RC, Gansler TS, eds. Cancer medicine. 6th ed. Hamilton (ON): BC Decker; 2003. p. 623–636.
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, et al. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 2003;19(3):267–294.
  • Maxwell JC, Thompson JJ. A treatise on electricity and magnetism: pt. III magnetism. IV electromagnetism. London, UK: Clarendon Press for the University of Oxford; 1892.
  • Cao Q, Han X, Zhang B, et al. Analysis and optimal design of magnetic navigation system using Helmholtz and Maxwell coils. IEEE Trans Appl Supercon. 2011;322(3):4401504.
  • Fiala D, Lomas KJ, Stohrer M. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol. 1999;87(5):1957–1972.
  • Di Barba P, Dughiero F, Sieni E. Magnetic field synthesis in the design of inductors for magnetic fluid hyperthermia. IEEE Trans Magn. 2010;46(8):2931–2934.
  • Jeon S, Jang G, Choi H, et al. Magnetic navigation system with gradient and uniform saddle coils for the wireless manipulation of micro-robots in human blood vessels. IEEE Trans Magn. 2010;46(6):1943–1946.
  • Ha YH, Han BH, Lee SY. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil. Med Biol Eng Comput. 2010;48(2):139–145.
  • Byun JK, Choi K, Roh HS, et al. Optimal design procedure for a practical induction heating cooker. IEEE Trans Magn. 2000;36(4):1390–1393.
  • Goldstein R, Nemkov V, inventors; AMF Life Systems, LLC, assignee. Generating strong magnetic fields at low radio frequencies in larger volumes. WO2018009542A1. 2018 Jan 11.
  • Gilchrist RK, Medal R, Shorey WD, et al. Selective inductive heating of lymph nodes. Ann Surg. 1957;146(4):596–606.
  • Park BH, Koo BS, Kim YK, et al. The induction of hyperthermia in rabbit liver by means of duplex stainless steel thermoseeds. Korean J Radiol. 2002;3(2):98–104.
  • Stigliano RV, Shubitidze F, Petryk JD, et al. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Int J Hyperthermia. 2016;32(7):735–738.
  • DiBarba P, Dughiero F, Trevisan F. Optimization of the Loney's solenoid through quasi-analytical strategies: a benchmark problem reconsidered. IEEE Trans Magn. 1997;33(2):1864–1867.
  • Soetaert F, Dupré L, Ivkov R, et al. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia. Biomed Engin/Biomedizinische Technik. 2015;60:491–504.
  • Kandala SK, Liapi E, Whitcomb LL, et al. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. Int J Hyperthermia. 2019;36(1):115–129.
  • Goldstein R, inventor; AMF Life Systems, LLC, assignee. Induction coil for low radiofrequency applications in a human head. US Patent 10,286,223 B2. 2019 May 14.
  • Stauffer P, Rodrigues DB, Goldstein R, et al. Dual modality implant for simultaneous magnetic nanoparticle heating and brachytherapy treatment of tumor resection cavities in brain. In: 2018 IEEE/MTT-S International Microwave Symposium – IMS. New York, NY: IEEE, 2018. p. 1285–1288.