1,730
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Radiofrequency applicator concepts for thermal magnetic resonance of brain tumors at 297 MHz (7.0 Tesla)

ORCID Icon, ORCID Icon, , , , , , , ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 549-563 | Received 01 Sep 2019, Accepted 17 Apr 2020, Published online: 02 Jun 2020

References

  • McGuire S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr. 2016;7(2):418–419.
  • Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3(8):487–497.
  • Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol. 2007;19(6):418–426.
  • Issels RD, Lindner LH, Verweij J, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2010;11(6):561–570.
  • Titsworth WL, Murad GJA, Hoh BL, et al. Fighting fire with fire: the revival of thermotherapy for gliomas. Anticancer Res. 2014;34(2):565–574.
  • Sneed PK, Stauffer PR, McDermott MW, et al. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 1998;40(2):287–295.
  • McDannold N, Vykhodtseva N, Jolesz FA, et al. MRI investigation of the threshold for thermally induced blood–brain barrier disruption and brain tissue damage in the rabbit brain. Magn Reson Med. 2004;51(5):913–923.
  • Zhang F, Xu C-L, Liu C-M. Drug delivery strategies to enhance the permeability of the blood–brain barrier for treatment of glioma. Drug Des Dev Ther. 2015;9:2089–2100.
  • Wang D, Wang C, Wang L, et al. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood–brain/brain tumor barriers for glioblastoma treatment. Drug Deliv. 2019;26(1):551–565.
  • Fiorentini G, Sarti D, Milandri C, et al. Modulated electrohyperthermia in integrative cancer treatment for relapsed malignant glioblastoma and astrocytoma: retrospective multicenter controlled study. Integr Cancer Ther. 2019;18:153473541881269.
  • Kok HP, Navarro F, Strigari L, et al. Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems: a simulation study. Int J Hyperthermia. 2018;34(6):714–730.
  • Wust P. Thermotherapy in oncology. Bremen, London, Boston: UNI-MED Verlag; 2016.
  • Coluccia D, Fandino J, Schwyzer L, et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound. 2014;2(1):17.
  • Maloney E, Hwang JH. Emerging HIFU applications in cancer therapy. Int J Hyperthermia. 2015;31(3):302–309.
  • Schneider CS, Woodworth GF, Vujaskovic Z, et al. Radiosensitization of high-grade gliomas through induced hyperthermia: review of clinical experience and the potential role of MR-guided focused ultrasound. Radiother Oncol. 2020;142:43–51.
  • Paulides MM, Wielheesen DHM, Van Der Zee J, et al. Assessment of the local SAR distortion by major anatomical structures in a cylindrical neck phantom. Int J Hyperthermia. 2005;21(2):125–140.
  • Bellizzi GG, Paulides MM, Drizdal T, et al. Selecting the optimal subset of antennas in hyperthermia treatment planning. IEEE J Electromagn RF Microw Med Biol. 2019;3(4):240–246.
  • Verduijn GM, de Wee EM, Rijnen Z, et al. Deep hyperthermia with the HYPERcollar system combined with irradiation for advanced head and neck carcinoma – a feasibility study. Int J Hyperthermia. 2018;34(7):994–1001.
  • Dobsicek Trefna H, Jonathan J, Vessman B, et al. Antenna applicator for microwave hyperthermia treatment of pediatric brain cancer. 8th European Conference on Antennas and Propagation, EuCAP 2014; 2014 Apr 6–11; The Hague, The Netherlands; 2014.
  • Winter L, Oezerdem C, Hoffmann W, et al. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Radiat Oncol. 2015;10(1):1.
  • Guérin B, Villena JF, Polimeridis AG, et al. Computation of ultimate SAR amplification factors for radiofrequency hyperthermia in non-uniform body models: impact of frequency and tumour location. Int J Hyperthermia. 2018;34(1):87–100.
  • Andre K, Eva O, Helmar W, et al. Solving the time-and frequency-multiplexed problem of constrained radiofrequency induced hyperthermia. Cancers. 2020;12:1072.
  • Winter L, Özerdem C, Hoffmann W, et al. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 tesla and proof-of-concept at 7.0 tesla. PLoS One. 2013;8(4):e61661.
  • de Bever J, Pendse M, Rutt BK. Design of focused radio frequency heating array coils for non-invasive hyperthermia with ultra-high field MRI. 28th ISMRM-ESMRMB Joint Annual Meeting and Exhibition; Paris, France; 2018.
  • Mallory M, Gogineni E, Jones GC, et al. Therapeutic hyperthermia: the old, the new, and the upcoming. Crit Rev Oncol/Hematol. 2016;97:56–64.
  • Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27(2):376–390.
  • Winter L, Oberacker E, Paul K, et al. Magnetic resonance thermometry: methodology, pitfalls and practical solutions. Int J Hyperthermia. 2016;32(1):63–75.
  • Paulides MM, Mestrom RMC, Salim G, et al. A printed Yagi–Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators. Phys Med Biol. 2017;62(5):1831–1847.
  • Guérin B, Villena JF, Polimeridis AG, et al. Ultimate hyperthermia: computation of the best achievable radio-frequency hyperthermia treatments in non-uniform body models. 24th ISMRM Annual Meeting and Exhibition; Toronto, Canada; 2015.
  • Ertürk MA, Sathyanarayana Hegde S, Bottomley PA. Radiofrequency ablation, MR thermometry, and high-spatial-resolution MR parametric imaging with a single, minimally invasive device. Radiology. 2016;281(3):927–932.
  • Oezerdem C, Winter L, Graessl A, et al. 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla. Magn Reson Med. 2016;75(6):2553–2565.
  • Raaijmakers AJE, Ipek O, Klomp DWJ, et al. Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna. Magn Reson Med. 2011;66(5):1488–1497.
  • Ebrahimi-Ganjeh MA, Attari AR. Study of water bolus effect on SAR penetration depth and effective field size for local hyperthermia. Prog Electromagn Res B. 2008;4:273–283.
  • Restivo MC, van den Berg CAT, van Lier ALHMW, et al. Local specific absorption rate in brain tumors at 7 tesla. Magn Reson Med. 2016;75(1):381–389.
  • Gabriel C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. DTIC Document; 1996.
  • Athey TW, Stuchly MA, Stuchly SS. Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: part I. IEEE Trans Microwave Theory Techn. 1982;30(1):82–86.
  • Stuchly MA, Athey TW, Samaras GM, et al. Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: part II—experimental results. IEEE Trans Microwave Theory Techn. 1982;30(1):87–92.
  • Kozlov M, Kalloch B, Hlawitschka M, et al. Toward individualized specific absorption rates: building a surface-based human head model. 25th ISMRM Annual Meeting and Exhibition; Honolulu, Hawaii, United States; 2017.
  • Nadobny J, Weihrauch M, Zschaeck S, et al. Fast and efficient generation of patient models for hyperthermia based on radiation therapy contours. 32nd Annual Meeting of the European Society for Hyperthermic Oncology. Berlin: Strahlentherapie und Onkologie; 2018.
  • Lemdiasov RA, Obi AA, Ludwig R. A numerical postprocessing procedure for analyzing radio frequency MRI coils. Concepts Magn Reson. 2011;38A(4):133–147.
  • Volken W, Frei D, Manser P, et al. An integral conservative gridding-algorithm using Hermitian curve interpolation. Phys Med Biol. 2008;53(21):6245–6263.
  • IEEE recommended practice for determining the spatial‐peak specific absorption rate (SAR) in the human body due to wireless communications devices: measurement techniques; 2003.
  • Kuehne A, Seifert F, Ittermann B. GPU-accelerated SAR computation with arbitrary averaging shapes. 20th ISMRM Annual Meeting and Exhibition; Melbourne, Australia; 2012.
  • Razmadze A, Shoshiashvili L, Kakulia D, et al. Influence of specific absorption rate averaging schemes on correlation between mass-averaged specific absorption rate and temperature rise. Electromagnetics. 2009;29(1):77–90.
  • Hirata A, Shirai K, Fujiwara O. On averaging mass of SAR correlating with temperature elevation due to a dipole antenna. Prog Electromagn Res. 2008;84:221–237.
  • Morimoto R, Laakso I, De Santis V, et al. Relationship between peak spatial-averaged specific absorption rate and peak temperature elevation in human head in frequency range of 1–30 GHz. Phys Med Biol. 2016;61(14):5406–5425.
  • Wainwright PR. The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band. Phys Med Biol. 2003;48(19):3143–3155.
  • Eichfelder G, Gebhardt M. Local specific absorption rate control for parallel transmission by virtual observation points. Magn Reson Med. 2011;66(5):1468–1476.
  • Kuehne A, Waiczies H, Niendorf T. Massively accelerated VOP compression for population-scale RF safety models. 25th ISMRM Annual Meeting and Exhibition; Honolulu, Hawaii, USA; 2017.
  • Luo Z-q, Ma W-k, So A, et al. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process Mag. 2010;27(3):20–34.
  • Bardati F, Borrani A, Gerardino A, et al. SAR optimization in a phased array radiofrequency hyperthermia system. IEEE Trans Biomed Eng. 1995;42(12):1201–1207.
  • Grant MC, Boyd SP, Ye Y. CVX: Matlab software for disciplined convex programming (web page and software). Available from: http://cvxr.com/cvx
  • Zastrow E, Hagness SC, Van Veen BD, et al. Time-multiplexed beamforming for noninvasive microwave hyperthermia treatment. IEEE Trans Biomed Eng. 2011;58(6):1574–1584.
  • Oberacker E, Kuehne A, Nadobny J, et al. Radiofrequency applicator concepts for simultaneous MR imaging and hyperthermia treatment of glioblastoma multiforme. Curr Direct Biomed Eng. 2017;3(2):473–477.
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93–122.
  • Canters RAM, Wust P, Bakker JF, et al. A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. Int J Hyperthermia. 2009;25(7):593–608.
  • Bellizzi GG, Drizdal T, van Rhoon GC, et al. Predictive value of SAR based quality indicators for head and neck hyperthermia treatment quality. Int J Hyperthermia. 2019;36(1):455–465.
  • Myerson RJ, Perez CA, Emami B, et al. Tumor control in long-term survivors following superficial hyperthermia. Int J Radiat Oncol Biol Phys. 1990;18(5):1123–1129.
  • Lee HK, Antell AG, Perez CA, et al. Superficial hyperthermia and irradiation for recurrent breast carcinoma of the chest wall: prognostic factors in 196 tumors. Int J Radiat Oncol Biol Phys. 1998;40(2):365–375.
  • Setsompop K, Wald LL, Alagappan V, et al. Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels. Magn Reson Med. 2008;59(4):908–915.
  • Takook P. Optimising microwave hyperthermia antenna systems. Chalmers University of Technology; 2018.