1,627
Views
17
CrossRef citations to date
0
Altmetric
Reviews

The impact of data selection and fitting on SAR estimation for magnetic nanoparticle heating

ORCID Icon, , &
Pages 100-107 | Received 14 Feb 2020, Accepted 11 Aug 2020, Published online: 10 Jan 2021

References

  • Mahmoudi K, Bouras A, Bozec D, et al. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int J Hyperthermia. 2018;34(8):1316–1313.
  • Ring HL, Bischof JC, Garwood M. The use and safety of iron-oxide nanoparticles in MRI and MFH. In Handbook – RF safety. Shrivastava D, editor. Hoboken, NJ: eMagRes;2019.
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–374.
  • Dennis CL, Jackson AJ, Borchers JA, et al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 2009;20(39):395103.
  • Giustini AJ, Ivkov R, Hoopes PJ. Magnetic nanoparticle biodistribution following intratumoral administration. Nanotechnology. 2011;22(34):345101–345101.
  • Hoopes PJ, et al. Intratumoral Iron Oxide Nanoparticle Hyperthermia and Radiation Cancer Treatment. in SPIE Proceedings. 2007.
  • Southern P, Pankhurst QA. Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models. Int J Hyperthermia. 2018;34(6):671–686.
  • Zhang J, Ring HL, Hurley KR, et al. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magn Reson Med. 2017;78(2):702–712.
  • Hoopes PJ, Petryk AP, Gimi B, et al. In Vivo imaging and quantification of iron oxide nanoparticle uptake and biodistribution. Proceedings of SPIE, 2012;8317:83170R.
  • Chen R, Romero G, Christiansen MG, et al. Wireless magnetothermal deep brain stimulation. Science. 2015;347(6229):1477–1480.
  • Manuchehrabadi N, Gao Z, Zhang J, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med. 2017;9(379):eaah4586.
  • Sharma A, Bischof JC, Finger EB. Liver cryopreservation for regenerative medicine applications. Regener Eng Transl Med. 2019 DOI:10.1007/s40883-019-00131-4
  • Tong S, Quinto CA, Zhang L, et al. Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano. 2017;11(7):6808–6816.
  • Wildeboer RR, Southern P, Pankhurst QA. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D: Appl Phys. 2014;47(49):495003.
  • Lahiri BB, Ranoo S, Philip J. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids. J Phys D: Appl Phys. 2017;50(45):455005.
  • Makridis A, Curto S, van Rhoon GC, et al. A standardisation protocol for accurate evaluation of specific loss power in magnetic hyperthermia. J Phys D: Appl Phys. 2019;52(25):255001.
  • Skumiel A, Hornowski T, Józefczak A, et al. Uses and limitation of different thermometers for measuring heating efficiency of magnetic fluids. Appl Therm Eng. 2016;100(Supplement C):1308–1318.
  • Soetaert F, Kandala SK, Bakuzis A, et al. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Sci Rep. 2017;7(1):6661.
  • Bordelon DE, Cornejo C, Grüttner C, et al. Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys. 2011;109(12):124904.
  • Hurley KR, Ring HL, Etheridge M, et al. Predictable heating and positive MRI contrast from a mesoporous silica-coated iron oxide nanoparticle. Mol Pharm. 2016;13(7):2172–2183.
  • Zhang J, Chamberlain R, Etheridge M, et al. Quantifying iron-oxide nanoparticles at high concentration based on longitudinal relaxation using a three-dimensional SWIFT look-locker sequence. Magn Reson Med. 2014;71(6):1982–1988.
  • Hedayati M, Abubaker-Sharif B, Khattab M, et al. An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles. Int J Hyperthermia. 2018;34(4):373–381.
  • Ring HL, et al. Ferrozine assay for simple and cheap iron analysis of silica-coated iron oxide nanoparticles. ChemRxiv. 2018.
  • Etheridge ML, Hurley KR, Zhang J, et al. Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology (Singap World Sci). 2014;2(3):214–228.
  • Teran FJ, Casado C, Mikuszeit N, et al. Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. Appl Phys Lett. 2012;101(6):062413.
  • Landi GT. Simple models for the heating curve in magnetic hyperthermia experiments. J Magn Magn Mater. 2013;326:14–21.
  • Huang S, Wang S-Y, Gupta A, et al. On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field. Meas Sci Technol. 2012;23(3):035701.
  • Wang SY, Huang S, Borca-Tasciuc DA. Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field. IEEE Trans Magn. 2013;49(1):255–262.
  • Etheridge ML, Bischof JC. Optimizing magnetic nanoparticle based thermal therapies within the physical limits of heating. Ann Biomed Eng. 2013;41(1):78–88.
  • Chartrand R. Numerical differentiation of noisy, nonsmooth data. ISRN Appl Mathematics. 2011;2011:1–11.
  • Bordelon DE, Goldstein RC, Nemkov VS, et al. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans Magn. 2012;48(1):47–52.
  • Conde-Leborán I, Serantes D, Baldomir D. Orientation of the magnetization easy axes of interacting nanoparticles: influence on the hyperthermia properties. J Magn Magn Mater. 2015;380:321–324.
  • Munoz-Menendez C, Conde-Leboran I, Baldomir D, et al. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects. Phys Chem Chem Phys. 2015;17(41):27812–27820.
  • Engelmann UM, Shasha C, Teeman E, et al. Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic Néel-Brown Langevin simulation. J Magn Magn Mater. 2019;471:450–456.