5,579
Views
6
CrossRef citations to date
0
Altmetric
Articles

Exploring the rationale for thermotherapy in COVID-19

ORCID Icon & ORCID Icon
Pages 202-212 | Received 10 Aug 2020, Accepted 22 Jan 2021, Published online: 07 Mar 2021

References

  • Yao Y, Pan J, Liu Z, et al. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur Respir J. 2020;55(5):2000517.
  • Ran J, Zhao S, Han L, et al. A re-analysis in exploring the association between temperature and COVID-19 transmissibility: an ecological study with 154 Chinese cities. Eur Respir J. 2020;56(2):2001253.
  • Sajadi MM, Habibzadeh P, Vintzileos A, et al. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA Netw Open. 2020;3(6):e2011834.
  • Wu Y, Jing W, Liu J, et al. Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci Total Environ. 2020;729:1–7.
  • Gupta D. "Therapeutic" facemasks”. Med Hypotheses. 2020;143(162):109855.
  • Bassi LL, Hwenda L. COVID-19: time to plan for prompt universal access to diagnostics and treatments. Lancet Glob Heal. 2020;8(6):e756–7–e757.
  • Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;25(4):536–544.
  • Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418–423.
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • Kang S, Yang M, Hong Z, et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B. 2020;10(7):1228–1238.
  • Tilocca B, Soggiu A, Sanguinetti M, et al. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes Infect. 2020;22(4-5):188–194.
  • Wang Y, Wu X, Wang Y, et al. Low stability of nucleocapsid protein in SARS virus. Biochemistry. 2004;43(34):11103–11108.
  • Duan S-M, Zhao X-S, Wen R-F, et al. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci. 2003;16(3):246–255.
  • Chin AWH, Chu JTS, Perera MRA, et al. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020;1(1):e10.
  • Peng Q, Peng R, Yuan B, et al. Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Rep. 2020;31(11):107774.
  • Yap TF, Liu Z, Shveda RA, et al. A predictive model of the temperature-dependent inactivation of coronaviruses. Appl Phys Lett. 2020;117(6):060601.
  • Foxman EF, Storer JA, Fitzgerald ME, et al. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci USA. 2015;112(3):827–832.
  • Holwerda M, Kelly J, Laloli L, et al. Determining the replication kinetics and cellular tropism of influenza D virus on primary well-differentiated human airway epithelial cells. Viruses. 2019;11(4):377–374.
  • Philip V, Gultom M, Steiner S, et al. Disparate temperature-dependent virus – host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. bioRxiv 2020.04.27.062315. https://doi.org/https://doi.org/10.1101/2020.04.27.062315
  • Laporte M, Stevaert A, Raeymaekers V, et al. The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways. bioRxiv. 2020.11.09.374603; doi: https://doi.org/https://doi.org/10.1101/2020.11.09.374603
  • Foxman EF, Storer JA, Vanaja K, et al. Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature. Proc Natl Acad Sci U S A. 2016;113(30):8496–8501.
  • Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–1045.e9.
  • Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–724.
  • Nakamura M, Hall PF. The mechanism by which body temperature inhibits protein biosynthesis in spermatids of rat testes. J Biol Chem. 1980;255(7):2907–2913.
  • McCormick W, Penman S. Regulation of protein synthesis in HeLa cells: translation at elevated temperatures. J Mol Biol. 1969;39(2):315–333.
  • Sadis S, Hickey E, Weber LA. Effect of heat shock on RNA metabolism in HeLa cells. J Cell Physiol. 1988;135(3):377–386.
  • Zhao Z, Dammert MA, Hoppe S, et al. Heat shock represses rRNA synthesis by inactivation of TIF-IA and lncRNA-dependent changes in nucleosome positioning. Nucleic Acids Res. 2016;44(17):8144–8152.
  • Shalgi R, Hurt JA, Lindquist S, et al. Widespread inhibition of posttranscriptional splicing shapes the cellular transcriptome following heat shock. Cell Rep. 2014;7(5):1362–1370.
  • Di Giammartino DC, Shi Y, Manley JL. PARP1 Represses PAP and Inhibits Polyadenylation during Heat Shock. Mol Cell. 2013;49(1):7–17.
  • Peng YH, Lin CH, Lin CN, et al. Characterization of the role of hexamer AGUAAA and poly(A) tail in coronavirus polyadenylation. PLoS One. 2016;11(10):e0165077–13.
  • Cortese M, Lee J-Y, Cerikan B, et al. Integrative imaging reveals SARS-CoV-2 induced reshaping of subcellular morphologies. Cell Host Microbe. 2020;28(6):853–866.
  • Pawlik A, Nowak JM, Grzanka D, et al. Hyperthermia induces cytoskeletal alterations and mitotic catastrophe in p53-deficient H1299 lung cancer cells. Acta Histochem. 2013;115(1):8–15.
  • Jasińska-Konior K, Wiecheć O, Sarna M, et al. Increased elasticity of melanoma cells after low-LET proton beam due to actin cytoskeleton rearrangements. Sci Rep. 2019;9(1):1–11.
  • Ghosh S, Dellibovi-Ragheb TA, Kerviel A, et al. β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell. 2020;183(6):1520–1516.
  • Mao G-J, Liang Z-Z, Gao G-Q, et al. A photostable Si-rhodamine-based near-infrared fluorescent probe for monitoring lysosomal pH during heat stroke. Anal Chim Acta. 2019;1092:117–125.
  • Hurwitz MD. Hyperthermia and immunotherapy: clinical opportunities. Int J Hyperthermia. 2019;36(sup1):4–9.
  • Gazel D, Yılmaz M. Are infectious diseases and microbiology new fields for thermal therapy research? Int J Hyperthermia. 2018;34(7):918–924.
  • Lin C, Chen J. Regulation of immune cell trafficking by febrile temperatures. Int J Hyperthermia. 2019;36(sup1):17–21.
  • Wheeler DS, Wong HR. Heat shock response and acute lung injury. Free Radic Biol Med. 2007;42(1):1–14.
  • Rébé C, Ghiringhelli F, Garrido C. Can the hyperthermia‐mediated Heat Shock Factor (HSF)/Heat Shock Protein (HSP) 70 pathway dampen the cytokine storm during SARS‐CoV‐2 infection? Br J Pharmacol. 2020;1–7. https://doi.org/https://doi.org/10.1111/bph.15343
  • Bolhassani A, Agi E. Heat shock proteins in infection. Clin Chim Acta. 2019;498(July):90–100.
  • Chan CP, Siu KL, Chin KT, et al. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2006;80(18):9279–9287.
  • DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog. 2011;7(10):e1002315.
  • Carpinteiro A, Edwards MJ, Hoffmann M, et al. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Reports Med. 2020;1(8):100142.
  • Fabri JHTM, de Sá NP, Malavazi I, et al. The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation. Prog Lipid Res. 2020;80(August):101063.
  • Kappel M, Stadeager C, Tvede N, et al. Effects of in vivo hyperthermia on natural killer cell activity, in vitro proliferative responses and blood mononuclear cell subpopulations. Clin Exp Immunol. 1991;84(1):175–180.
  • Shen R-N, Lu L, Young P, et al. Influence of elevated temperature on natural killer cell activity, lymphokine-activated killer cell activity and lectin-dependent cytotoxicity of human umbilical cord blood and adult blood cells. Int J Radiat Oncol Biol Phys. 1994;29(4):821–826.
  • Knippertz I, Stein MF, Dörrie J, et al. Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies. Int J Hyperthermia. 2011;27(6):591–603.
  • Liso A, Castellani S, Massenzio F, et al. Human monocyte-derived dendritic cells exposed to hyperthermia show a distinct gene expression profile and selective upregulation of IGFBP6. Oncotarget. 2017;8(37):60826–60840.
  • Peng JC, Hyde C, Pai S, et al. Monocyte-derived DC primed with TLR agonists secrete IL-12p70 in a CD40-dependent manner under hyperthermic conditions. J Immunother. 2006;29(6):606–615.
  • Hatzfeld-Charbonnier AS, Lasek A, Castera L, et al. Influence of heat stress on human monocyte-derived dendritic cell functions with immunotherapeutic potential for antitumor vaccines. J Leukoc Biol. 2007;81(5):1179–1187.
  • Umar D, Das A, Gupta S, et al. Febrile temperature change modulates CD4 T cell differentiation via a TRPV channel-regulated Notch-dependent pathway. Proc Natl Acad Sci USA. 2020;117(36):22357–22366.
  • Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;1–20. https://doi.org/https://doi.org/10.1016/j.cell.2021.01.007.
  • Tan AT, Linster M, Tan CW, et al. Early induction of SARS-CoV-2 specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Reports. 2021;1–9. https://doi.org/https://doi.org/10.1016/j.celrep.2021.108728.
  • Pierce CA, Preston-Hurlburt P, Dai Y, et al. Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci Transl Med. 2020;12(564):1–17.
  • Wang X, Ni L, Wan S, et al. Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells. Immunity. 2020;52(2):328–341.e5.
  • Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636–1643.
  • Lee SJ, Channappanavar R, Kanneganti TD. Coronaviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends Immunol. 2020;41(12):1083–1099.
  • Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol. 2012;34(1):43–62.
  • Bester J, Matshailwe C, Pretorius E. Simultaneous presence of hypercoagulation and increased clot lysis time due to IL-1β, IL-6 and IL-8. Cytokine. 2018;110:237–242.
  • Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020;18(7):1559–1561.
  • Stuhlmeier KM. Short term hyperthermia prevents the activation of mitogen-activated protein kinase p38. Exp Gerontol. 2009;44(6-7):406–412.
  • Kappel M, Diamant M, Hansen MB, Klokker M, et al. Effects of in vitro hyperthermia on the proliferative response of blood mononuclear cell subsets, and detection of interleukins 1 and 6, tumour necrosis factor-alpha and interferon-gamma. Immunology. 1991;73(3):304–308.
  • Voinnet O. RNA silencing as a plant immune system against viruses. Trends Genet. 2001;17(8):449–459.
  • Waterhouse PM, Wang M, Lough T. Gene silencing as an adaptive defence against viruses. Nature. 2001;411(6839):834–842.
  • Gantier MP. Processing of double-stranded RNA in mammalian cells: a direct antiviral role? J Interferon Cytokine Res. 2014;34(6):469–477.
  • Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006;50(2):81–99.
  • Shabalina SA, Koonin EV. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol. 2008;23(10):578–587.
  • Li Y, Lu J, Han Y, et al. RNA interference functions as an antiviral immunity mechanism in mammals. Science. 2013;342(6155):231–234.
  • Maillard PV, Ciaudo C, Marchais A, et al. Antiviral RNA interference in mammalian cells. Science. 2013;342(6155):235–238.
  • Maillard PV, Van der Veen AG, Deddouche‐Grass S, et al. Inactivation of the type I interferon pathway reveals long double-stranded RNA-mediated RNA interference in mammalian cells. Embo J. 2016;35(23):2505–2518.
  • Schuster S, Tholen LE, Overheul GJ, et al. Deletion of cytoplasmic double-stranded RNA sensors does not uncover viral small interfering RNA production in human cells. mSphere. 2017;2(4):1–9.
  • Schuster S, Overheul GJ, Bauer L, et al. No evidence for viral small RNA production and antiviral function of Argonaute 2 in human cells. Sci Rep. 2019;9(1):1–11.
  • Wynant N, Santos D, Vanden Broeck J. The evolution of animal Argonautes: evidence for the absence of antiviral AGO Argonautes in vertebrates. Sci Rep. 2017;7(1):1–13.
  • Hauptmann J, Kater L, Löffler P, et al. Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. RNA. 2014;20(10):1532–1538.
  • Petri S, Dueck A, Lehmann G, et al. Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. RNA. 2011;17(4):737–749.
  • Modzelewski AJ, Holmes RJ, Hilz S, et al. AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev Cell. 2012;23(2):251–264.
  • Adiliaghdam F, Basavappa M, Saunders TL, et al. A requirement for argonaute 4 in mammalian antiviral defense. Cell Rep. 2020;30(6):1690–1701.e4.
  • Maillard PV, Veen AG, Poirier EZ, et al. Slicing and dicing viruses: antiviral RNA interference in mammals. Embo J. 2019;38(8):1–13.
  • Karjee S, Mukherjee SK. RNAi suppressor: the hidden weapon of SARS-CoV. J Biosci. 2020;45(1):1–6.
  • Chellappan P, Vanitharani R, Ogbe F, et al. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. 2005;138(4):1828–1841.
  • Zhang X, Zhang X, Singh J, et al. Temperature-dependent survival of turnip crinkle virus-infected arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1. J Virol. 2012;86(12):6847–6854.
  • Liu J, Zhang XJ, Yang YK, et al. Characterization of virus-derived small interfering RNAs in Apple stem grooving virus-infected in vitro-cultured Pyrus pyrifolia shoot tips in response to high temperature treatment. Virol J. 2016;13(1):1–11.
  • Wang MR, Cui ZH, Li JW, et al. In vitro thermotherapy-based methods for plant virus eradication. Plant Methods. 2018;14(1):1–18.
  • Dewhirst MW, Vujaskovic Z, Jones E, et al. Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia. 2005;21(8):779–790.
  • Yarmolenko PS, Moon EJ, Landon C, et al. Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia. 2011;27(4):320–343.
  • Chen Q, Fisher DT, Clancy KA, et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol. 2006;7(12):1299–1308.
  • Tulapurkar ME, Asiegbu BR, Singh IS, et al. Hyperthermia in the febrile range induces HSP72 expression proportional to exposure temperature but not to HSF-1 DNA-binding activity in human lung epithelial A549 cells. Cell Stress Chaperones. 2009;14(5):499–508.
  • Torigoe T, Tamura Y, Sato N. Heat shock proteins and immunity: application of hyperthermia for immunomodulation. Int J Hyperthermia. 2009;25(8):610–616.
  • Zhang HG, Mehta K, Cohen P, et al. Hyperthermia on immune regulation: a temperature's story. Cancer Lett. 2008;271(2):191–204.
  • Welch V, Brosseau L, Casimiro L, et al. Thermotherapy for treating rheumatoid arthritis. Cochrane Database Syst Rev. 2002;2002(2):CD002826.
  • Brosseau L, Yonge K, Welch V, et al. Thermotherapy for treatment of osteoarthritis. Cochrane Database Syst Rev. 2003;2003(4):CD004522.
  • Prow NA, Tang B, Gardner J, et al. Lower temperatures reduce type I interferon activity and promote alphaviral arthritis. PLoS Pathog. 2017;13(12):e1006788–25.
  • Zhu L. l, Gao XH, Qi R, et al. Local hyperthermia could induce antiviral activity by endogenous interferon-dependent pathway in condyloma acuminata. Antiviral Res. 2010;88(2):187–192.
  • Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436.
  • Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26(7):1070–1076.
  • Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239.
  • Gandhi RT, Lynch JB, del Rio C. Mild or moderate Covid-19. N Engl J Med. 2020;383(18):1757–1766.
  • Cao W, Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020;30(5):367–369.
  • Lipsitch M, Perlman S, Waldor MK. Testing COVID-19 therapies to prevent progression of mild disease. Lancet Infect Dis. 2020;20(12):1367.
  • Tharakan S, Nomoto K, Miyashita S, et al. Body temperature correlates with mortality in COVID-19 patients. Crit Care. 2020;24(1):298.
  • Walter EJ, Hanna-Jumma S, Carraretto M, et al. The pathophysiological basis and consequences of fever. Crit Care. 2016;20(1):1–10.
  • Hasday JD, Shah N, Mackowiak PA, et al. Fever, hyperthermia, and the lung: it’s all about context and timing. Trans Am Clin Climatol Assoc. 2011;122:34–47.
  • Singh IS, Hasday JD. Fever, hyperthermia and the heat shock response. Int J Hyperthermia. 2013;29(5):423–435.
  • Guihur A, Rebeaud ME, Fauvet B, et al. Moderate fever cycles as a potential mechanism to protect the respiratory system in COVID-19 patients. Front Med. 2020;7(September):1–8.
  • Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev. 2020;163-164:98–124.
  • van Leeuwen CM, Crezee J, Oei AL, et al. The effect of time interval between radiotherapy and hyperthermia on planned equivalent radiation dose. Int J Hyperthermia. 2018;34(7):901–909.
  • Li JJ. Mitigating coronavirus-induced acute respiratory distress syndrome by radiotherapy. iScience. 2020;23(6):101215.
  • Koosha F, Pourbagheri-Sigaroodi A, Bakhshandeh M, et al. Low-dose radiotherapy (LD-RT) for COVID-19-induced pneumopathy: a worth considering approach. Int J Radiat Biol. 2020;0(0):1–24.
  • Hess CB, Buchwald ZS, Stokes W, et al. Low-dose whole-lung radiation for COVID-19 pneumonia: planned day 7 interim analysis of a registered clinical trial. Cancer. 2020;126(23):5109–5113.
  • Ameri A, Rahnama N, Bozorgmehr R, et al. Low-dose whole-lung irradiation for COVID-19 pneumonia: Short Course Results. Int J Radiation Oncol Biol Phys. 2020;108(5):1134–1139.
  • Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720.
  • Gaythorpe K, Imai N, Cuomo-Dannenburg G, et al. Symptom progression of COVID-19 [Internet]. Imperial College London. London; 2020 [2020 Mar 11; vols 2020-03–11]. Available from: https://spiral.imperial.ac.uk/handle/10044/1/77344.
  • Gupta S, Hayek SS, Wang W, et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Intern Med. 2020;180(11):1436–1411.
  • Qian Q, Zhou H, Shu T, et al. The capsid protein of Semliki forest virus antagonizes RNA interference in mammalian cells. J Virol. 2019;94(3):1–17.
  • Qiu Y, Xu YP, Wang M, et al. Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Sci Adv. 2020;6(6):1–14.
  • Cui L, Wang H, Ji Y, et al. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. J Virol. 2015;89(17):9029–9043.
  • Karjee S, Minhas A, Sood V, et al. The 7a accessory protein of severe acute respiratory syndrome coronavirus acts as an RNA silencing suppressor. J Virol. 2010;84(19):10395–10401.
  • Mu J, Xu J, Zhang L, et al. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Sci China Life Sci. 2020;63(9):1–4.