4,126
Views
35
CrossRef citations to date
0
Altmetric
Articles

Challenges and recommendations for magnetic hyperthermia characterization measurements

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 447-460 | Received 24 Aug 2020, Accepted 15 Feb 2021, Published online: 17 Mar 2021

References

  • “International Agency for Research on Cancer, GLOBOCAN 2018 accessed via Global Cancer Observatory,” 2018.
  • Kantoff PW, Schuetz TJ, Blumenstein BA, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(7):1099–1105. Hoos A, Britten CM, Huber C, et al. A methodological framework to enhance the clinical success of cancer immunotherapy. Nat Biotechnol. 2011;29(10):867–870.
  • Miyamoto H, Messing EM, Chang C. Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate. 2004;61(4):332–353. Hellerstedt BA, Pienta KJ. The current state of hormonal therapy for prostate cancer. CA Cancer J Clin. 2009;52:154.
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2008;24(6):467–474.
  • Bañobre-López M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother. 2013;18(6):397–400.
  • Dutz S, Hergt R. Magnetic particle hyperthermia-a promising tumour therapy? Nanotechnology. 2014;25(45):452001.
  • Johannsen M, Gneveckow U, Eckelt L, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia. 2005;21(7):637–647; Wust P, Gneveckow U, Johannsen M, et al. Magnetic nanoparticles for interstitial thermotherapy–feasibility, tolerance and achieved temperatures. Int J Hyperthermia. 2006;22(8):673–685; Johannsen M, Gneveckow U, Thiesen B, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52(6):1653–1661; Maier-Hauff K, Rothe R, Scholz R, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007;81(1):53–60; Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–324.
  • Dutz S, Kettering M, Hilger I, et al. Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties. Nanotechnology. 2011;22(26):265102; Perigo EA, Hemery G, Sandre O, et al. Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev. 2015;2(4):041302; Blanco-Andujar C, Teran FJ, Ortega D. Chapter 8 - current outlook and perspectives on nanoparticle-mediated magnetic hyperthermia. In: Mahmoudi M, Laurent S, editors. Iron Oxide Nanoparticles for Biomedical Applications. Amsterdam: Elsevier; 2018. p. 197–245; Chang D, Lim M, Goos JACM, et al. Biologically targeted magnetic hyperthermia: Potential and limitations. Front Pharmacol. 2018;9:831.
  • Note: The SLP parameter is also sometimes referred to in the literature as the ‘specific absorption rate’, SAR. This should not be confused with the clinical use of the SAR terminology, which refers exclusively to power dissipation in tissue.
  • Kallumadil M, Tada M, Nakagawa T, et al. Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater. 2009;321(10):1509–1513.
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–374.
  • Carrey J, Mehdaoui B, Respaud M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys. 2011;109(8):083921.
  • Dutz S, Clement JH, Eberbeck D, et al. Ferrofluids of magnetic multicore nanoparticles for biomedical applications. J Magn Magn Mater. 2009;321(10):1501; Lee JH, Jang JT, Choi JS, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol. 2011;6:418; Hugounenq P, Levy M, Alloyeau D, et al. Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. Journal of Physical Chemistry C 2012;116(29):15702–12; Behdadfar B, Kermanpur A, Sadeghi-Aliabadi H, et al. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route. J Solid State Chem. 2012;187:20–2; Guardia P, Di Corato R, Lartigue L, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 2012;6(4):3080; Martinez-Boubeta C, Simeonidis K, Makridis A, et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Scientific Reports. 2013;3:1652; Blanco-Andujar C, Ortega D, Southern P, et al. High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale. 2015;7(5):1768–75; Shubitidze F, Kekalo K, Stigliano R, et al. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy. J Appl Phys. 2015;117(9):094302.
  • Wells J, Kazakova O, Posth O, et al. Standardisation of magnetic nanoparticles in liquid suspension. J Phys D Appl Phys. 2017;50(38):383003.
  • Wildeboer RR, Southern P, Pankhurst QA. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D Appl Phys. 2014;47(49):495003.
  • Makridis A, Curto S, van Rhoon GC, et al. A standardisation protocol for accurate evaluation of specific loss power in magnetic hyperthermia. J Phys D Appl Phys. 2019;52(25):255001.
  • OECD (Organisation for Economic Co-operation and Development). Guidance document on the validation and international acceptance of new of updated test methods for hazard assessment. 2005.
  • Spirou S, Basini M, Lascialfari A, et al. Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice †. Nanomaterials (Basel). 2018;8(6):401.
  • COST Action “RADIOMAG”. website: http://www.cost-radiomag.eu/
  • Roebben G, Rasmussen K, Kestens V, et al. Reference materials and representative test materials: the nanotechnology case. J Nanopart Res. 2013;15:1455.
  • Rad AM, Janic B, Iskander ASM, et al. Measurement of quantity of iron in magnetically labeled cells: comparison among different UV/VIS spectrometric methods. BioTechniques. 2007;43(5):627–628, 630, 632 passim.,
  • Frot D, Jacob D. US patent 2012/0250019 (priority date 2009/6/26).
  • ASTM International. ASTM E691-18 standard practice for conducting an interlaboratory study to determine the precision of a test method. West Conshohocken (PA): ASTM International; 2018.
  • Dunlop DJ, Özdemir Ö. Rock magnetism: fundamentals and frontiers. Cambridge: Cambridge University Press; 1997.
  • Note: Matlab and Excel versions of the CSM analysis programs are freely available at www.resonantcircuits.com.
  • Youden WJ. Graphical diagnosis of interlaboratory test results. J Qual Technol. 1972;4(1):29. Croarkin C, Guthrie W. NIST/SEMATECH e-handbook of statistical methods. 2003. DOI:https://doi.org/10.18434/M32189.
  • Mandel J. The validation of measurement through interlaboratory studies. Chemom Intell Lab Syst. 1991;11(2):109–119.
  • Bogart LK, Blanco-Andujar C, Pankhurst QA. Environmental oxidative aging of iron oxide nanoparticles. Appl Phys Lett. 2018;113(13):133701.
  • Note: For example, the “AC Magnetic Field Probe” manufactured by Nanoscience Laboratories Limited, Newcastle under Lyme, UK.
  • Shir F, Mavriplis C, Bennett LH. Instrum Sci. Technol. 2005;33(6):661–671.
  • Natividad E, Castro M, Mediano A. Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater. 2009;321(10):1497–1500.
  • Wang SY, Huang S, Borca-Tasciuc DA. Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field. IEEE Trans Magn. 2013;49(1):255.
  • Natividad E, Castro M, Mediano A. Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup. Appl Phys Lett. 2008;92(9):093116.