2,138
Views
11
CrossRef citations to date
0
Altmetric
Articles

Collagen/kerateine multi-protein hydrogels as a thermally stable extracellular matrix for 3D in vitro models

ORCID Icon, ORCID Icon, , , ORCID Icon, & show all
Pages 830-845 | Received 23 Dec 2020, Accepted 08 May 2021, Published online: 01 Jun 2021

References

  • Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell. 2010;40(2):253–266.
  • Dewey WC, Diederich CJ. Hyperthermia classic commentary: “Arrhenius relationships from the molecule and cell to the clinic” by William Dewey, Int. J. Hyperthermia, 10:457–483, 1994. Int J Hyperthermia. 2009;25:21–24.
  • Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33–56.
  • Kok HP, Cressman ENK, Ceelen W, et al. Heating technology for malignant tumors: a review. Int J Hyperthermia. 2020;37(1):711–741.
  • Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14:199–208.
  • Abraham LC, Zuena E, Perez B, et al. Guide to collagen characterization for biomaterial studies. J Biomed Mater Res B Appl Biomater. 2008;87:264–285.
  • Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials. 2003;24(5):759–767.
  • Ulrich TA, Jain A, Tanner K, et al. Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials. 2010;31:1875–1884.
  • Gribova V, Crouzier T, Picart C. A material’s point of view on recent developments of polymeric biomaterials: control of mechanical and biochemical properties. J Mater Chem. 2011;21:14354–14366.
  • Levy-Mishali M, Zoldan J, Levenberg S. Effect of scaffold stiffness on myoblast differentiation. Tissue Eng Part A. 2009;15:935–944.
  • Abhyankar VV, Toepke MW, Cortesio CL, et al. A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab Chip. 2008;8:1507–1515.
  • Haessler U, Kalinin Y, Swartz MA, et al. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed Microdevices. 2009;11:827–835.
  • Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol. 2018;9:6.
  • Ghousifam N, Mortazavian H, Bhowmick R, et al. A three-dimensional in vitro model to demonstrate the haptotactic effect of monocyte chemoattractant protein-1 on atherosclerosis-associated monocyte migration. Int J Biol Macromol. 2017;97:141–147.
  • Antoine EE, Vlachos PP, Rylander MN. Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS One. 2015;10:e0122500.
  • Kutschka I, Chen IY, Kofidis T, et al. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation. 2006;114(1_suppl):I-167–I-173.
  • Doyle AD, Carvajal N, Jin A, et al. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat Commun. 2015;6:1–15.
  • Szot CS, Buchanan CF, Freeman JW, et al. In vitro angiogenesis induced by tumor-endothelial cell co-culture in bilayered, collagen I hydrogel bioengineered tumors. Tissue Eng Part C Methods. 2013;19:864–874.
  • Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8:241–254.
  • Netti PA, Berk DA, Swartz M, et al. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000;1:2497–2503.
  • Cross VL, Zheng Y, Won Choi N, et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials. 2010;31(33):8596–8607.
  • Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng B Rev. 2014;20:683–696.
  • Ozkan A, Ghousifam N, Hoopes PJ, et al. In vitro vascularized liver and tumor tissue microenvironments on a chip for dynamic determination of nanoparticle transport and toxicity. Biotechnol Bioeng. 2019;116:1201–1219.
  • Kim BS, Lee J-S, Gao G, et al. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication. 2017;9(2):025034.
  • Arnette C, Koetsier JL, Hoover P, et al. In vitro model of the epidermis: connecting protein function to 3D structure. Methods Enzymol. 2016;5:287–308.
  • Ikuta S, Sekino N, Hara T, et al. Mouse epidermal keratinocytes in three-dimensional organotypic coculture with dermal fibroblasts form a stratified sheet resembling skin. Biosci Biotechnol Biochem. 2006;70:2669–2675.
  • Whitney J, DeWitt M, Whited BM, et al. 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy. Nanotechnology. 2013;24:275102.
  • Whitney JR, Rodgers A, Harvie E, et al. Spatial and temporal measurements of temperature and cell viability in response to nanoparticle-mediated photothermal therapy. Nanomedicine. 2012;7:1729–1742.
  • Kobayashi T. Cancer hyperthermia using nanomagnetic particles and induction of immune responses. In: Torchilin V, editor. Handbook of nanobiomedical research. Fundamentals, applications and recent developments, applications in therapy. Vol. 2. Singapore: World Scientific; 2014. p. 465–499.
  • Coolen NA, Vlig M, Van Den Bogaerdt AJ, et al. Development of an in vitro burn wound model. Wound Repair Regen. 2008;16(4):559–567.
  • Sobral CS, Gragnani A, Cao X, et al. Human keratinocytes cultured on collagen matrix used as an experimental burn model. J Burns Wounds. 2007;7:e6.
  • Sart S, Ma T, Li Y. Preconditioning stem cells for in vivo delivery. Biores Open Access. 2014;3:137–149.
  • Jeong YM, Cheng XW, Lee S, et al. Preconditioning with far-infrared irradiation enhances proliferation, cell survival, and migration of rat bone marrow-derived stem cells via CXCR4-ERK pathways. Sci Rep. 2017;7:1–9.
  • Chung E, Rylander MN. Response of preosteoblasts to thermal stress conditioning and osteoinductive growth factors. Cell Stress Chaperones. 2012;17:203–214.
  • Harder Y, Contaldo C, Klenk J, et al. Improved skin flap survival after local heat preconditioning in pigs. J Surg Res. 2004;119(1):100–105.
  • Skitzki JJ, Repasky EA, Evans SS. Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Investig Drugs. 2009;10:550–558.
  • Miles CA, Bailey AJ. Thermal denaturation of collagen revisited. Proc Indian Acad Sci. 1999;111:71–80.
  • Pietrucha K. Changes in denaturation and rheological properties of collagen–hyaluronic acid scaffolds as a result of temperature dependencies. Int J Biol Macromol. 2005;36:299–304.
  • Ozcelikkale A, Han B. Thermal destabilization of collagen matrix hierarchical structure by freeze/thaw. PLoS One. 2016;11:e0146660.
  • Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online. 2019;18:24.
  • Fernandes ACM, de França JP, Gaiba S, et al. Development of experimental in vitro burn model. Acta Cir Bras. 2014;29(Suppl. 2):15–20.
  • Emanuelsson P, Kratz G. Characterization of a new in vitro burn wound model. Burns. 1997;23:32–36.
  • Van De Merbel AF, Van Der Horst G, Van Der Mark MH, et al. An ex vivo tissue culture model for the assessment of individualized drug responses in prostate and bladder cancer. Front Oncol. 2018;8:400.
  • Misra S, Moro CF, Del Chiaro M, et al. Ex vivo organotypic culture system of precision-cut slices of human pancreatic ductal adenocarcinoma. Sci Rep. 2019;9:1–16.
  • Sarkar S, Rylander CG, Rylander MN, et al. Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns. J Biomed Opt. 2011;16(5):051304.
  • Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–126.
  • Szekalska M, Puciłowska A, Szymańska E, et al. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci. 2016;2016:1–17.
  • Sobhanian P, Khorram M, Hashemi S-S, et al. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int J Biol Macromol. 2019;130:977–987.
  • Trivedi TJ, Rao KS, Kumar A. Facile preparation of agarose–chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol–gel transition. Green Chem. 2014;16(1):320–330.
  • Balaji S, Kumar R, Sripriya R, et al. Characterization of keratin–collagen 3D scaffold for biomedical applications. Polym Adv Technol. 2012;23(3):500–507.
  • Wortmann F, Deutz H. Characterizing keratins using high‐pressure differential scanning calorimetry (HPDSC). J Appl Polym Sci. 1993;48(1):137–150.
  • Wortmann FJ, Wortmann G, Marsh J, et al. Thermal denaturation and structural changes of α-helical proteins in keratins. J Struct Biol. 2012;177:553–560.
  • Spei M, Holzem R. Thermoanalytical determination of the relative helix content of keratins. Colloid Polym Sci. 1989;267(6):549–551.
  • Rouse JG, Van Dyke ME. A review of keratin-based biomaterials for biomedical applications. Materials. 2010;3(2):999–1014.
  • Richter JR, de Guzman RC, Van Dyke ME. Mechanisms of hepatocyte attachment to keratin biomaterials. Biomaterials. 2011;32:7555–7561.
  • Sierpinski P, Garrett J, Ma J, et al. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials. 2008;29:118–128.
  • Wang S, Taraballi F, Tan LP, et al. Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell Tissue Res. 2012;347:795–802.
  • Ajay Sharma L, Ali MA, Love RM, et al. Novel keratin preparation supports growth and differentiation of odontoblast‐like cells. Int Endod J. 2016;49(5):471–482.
  • Wang J, Hao S, Luo T, et al. Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloids Surf B Biointerfaces. 2017;149:341–350.
  • Hill P, Brantley H, Van Dyke M. Some properties of keratin biomaterials: kerateines. Biomaterials. 2010;31:585–593.
  • de Guzman RC, Merrill MR, Richter JR, et al. Mechanical and biological properties of keratose biomaterials. Biomaterials. 2011;32:8205–8217.
  • Yang G, Yao Y, Wang X. Comparative study of kerateine and keratose based composite nanofibers for biomedical applications. Mater Sci Eng C. 2018;83:1–8.
  • Kühbacher A, Sohn K, Burger-Kentischer A, et al. Immune cell-supplemented human skin model for studying fungal infections. Hum Fungal Pathog Identif. 2017;1508:439–449.
  • Buchanan CF, Voigt EE, Szot CS, et al. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng C Methods. 2013;20:64–75.
  • Wu C-C, Ding S-J, Wang Y-H, et al. Mechanical properties of collagen gels derived from rats of different ages. J Biomater Sci Polym Ed. 2005;16:1261–1275.
  • Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4:165–178.
  • Wullkopf L, West A-KV, Leijnse N, et al. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol Biol Cell. 2018;29:2378–2385.
  • Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139:891–906.
  • Michna R, Gadde M, Ozkan A, et al. Vascularized microfluidic platforms to mimic the tumor microenvironment. Biotechnol Bioeng. 2018;115:2793–2806.
  • Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004;83:249–289.
  • Roti Roti JL. Cellular responses to hyperthermia (40–46 degrees C): cell killing and molecular events. Int J Hyperthermia. 2008;24(1):3–15.
  • Eftekharjoo M, Palmer D, McCoy B, et al. Fibrillar force generation by fibroblasts depends on formin. Biochem Biophys Res Commun. 2019;510:72–77.
  • Li S, Guan J-L, Chien S. Biochemistry and biomechanics of cell motility. Annu Rev Biomed Eng. 2005;7:105–150.
  • Jiang H, Grinnell F. Cell–matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices. Mol Biol Cell. 2005;16:5070–5076.
  • Kenny PA, Lee GY, Myers CA, et al. The morphologies of breast cancer cell lines in three‐dimensional assays correlate with their profiles of gene expression. Mol Oncol. 2007;1:84–96.
  • Ziperstein MJ, Guzman A, Kaufman LJ. Breast cancer cell line aggregate morphology does not predict invasive capacity. PLoS One. 2015;10(9):e0139523.
  • Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103:655–663.
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–4351.
  • Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3(3):1863–1887.
  • Kreger ST, Bell BJ, Bailey J, et al. Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolym Orig Res Biomol. 2010;93:690–707.
  • Miron-Mendoza M, Seemann J, Grinnell F. The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices. Biomaterials. 2010;31:6425–6435.
  • Gobeaux F, Mosser G, Anglo A, et al. Fibrillogenesis in dense collagen solutions: a physicochemical study. J Mol Biol. 2008;376:1509–1522.
  • Lee H, Noh K, Lee SC, et al. Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regen Med. 2014;11(4):255–265.
  • Ham TR, Lee RT, Han S, et al. Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules. 2016;17:225–236.
  • Vasconcelos A, Freddi G, Cavaco-Paulo A. Biodegradable materials based on silk fibroin and keratin. Biomacromolecules. 2008;9:1299–1305.
  • Silva R, Singh R, Sarker B, et al. Hybrid hydrogels based on keratin and alginate for tissue engineering. J Mater Chem B. 2014;2:5441–5451.
  • Reichl S. Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials. 2009;30:6854–6866.
  • Liu GY, Agarwal R, Ko KR, et al. Templated assembly of collagen fibers directs cell growth in 2D and 3D. Sci Rep. 2017;7:9628.
  • Omidinia‐Anarkoli A, Boesveld S, Tuvshindorj U, et al. An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells. Small. 2017;13(36):1702207.
  • Plodinec M, Loparic M, Monnier CA, et al. The nanomechanical signature of breast cancer. Nat Nanotechnol. 2012;7:757.
  • Knapp DM, Barocas VH, Moon AG, et al. Rheology of reconstituted type I collagen gel in confined compression. J Rheol. 1997;41(5):971–993.
  • Slater K, Partridge J, Nadivada H. Tuning the elastic moduli of Corning® Matrigel® and collagen I 3D matrices by varying the protein concentration. Corning; 2017. Available from: https://www.corning.com/Media/Worldwide/Cls/Documents/Applications/CLS-AC-AN-449DL.Pdf
  • Chaudhuri O, Koshy ST, Da Cunha CB, et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater. 2014;13:970–978.
  • Roy DC, Tomblyn S, Isaac KM, et al. Ciprofloxacin‐loaded keratin hydrogels reduce infection and support healing in a porcine partial‐thickness thermal burn. Wound Repair Regen. 2016;24:657–668.
  • Piskounova S, Rojas R, Bergman K, et al. The effect of mixing on the mechanical properties of hyaluronan-based injectable hydrogels. Macromol Mater Eng. 2011;296(10):944–951.
  • Balani K, Verma V, Agarwal A, et al., editors. Physical, thermal, and mechanical properties of polymers. In: Biosurfaces. Hoboken (NJ): John Wiley & Sons, Inc.; 2015. p. 329–344.
  • Masaro L, Zhu XX. Physical models of diffusion for polymer solutions, gels and solids. Prog Polym Sci. 1999;24:731–775.
  • Kocen R, Gasik M, Gantar A, et al. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Biomed Mater. 2017;12(2):025004.
  • Leikina E, Mertts MV, Kuznetsova N, et al. Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci U S A. 2002;99:1314–1318.
  • Tuttolomondo MV, Galdopórpora JM, Trichet L, et al. Dye–collagen interactions. Mechanism, kinetic and thermodynamic analysis. RSC Adv. 2015;5(71):57395–57405.
  • Sun XS. 9 – thermal and mechanical properties of soy proteins. In: Wool RP, Sun XS, editors. Bio-Based polymers and composites. Burlington: Academic Press; 2005. p. 292–326.
  • Vu T, Xue Y, Vuong T, et al. Comparative study of ultrasonication-induced and naturally self-assembled silk fibroin-wool keratin hydrogel biomaterials. Int J Mol Sci. 2016;17(9):1497.
  • Thompson BR, Horozov TS, Stoyanov SD, et al. An ultra melt-resistant hydrogel from food grade carbohydrates. RSC Adv. 2017;7(72):45535–45544.
  • Andersen T, Auk-Emblem P, Dornish M. 3D cell culture in alginate hydrogels. Microarrays. 2015;4:133–161.
  • Verma V, Verma P, Ray P, et al. Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater. 2008;3:25007.
  • Wang S, Wang Z, Foo SEM, et al. Culturing fibroblasts in 3D human hair keratin hydrogels. ACS Appl Mater Interfaces. 2015;7:5187–5198.
  • Streichan SJ, Hoerner CR, Schneidt T, et al. Spatial constraints control cell proliferation in tissues. Proc Natl Acad Sci USA. 2014;111:5586–5591.
  • Tomblyn S, Pettit Kneller EL, Walker SJ, et al. Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells. J Biomed Mater Res Part B Appl Biomater. 2016;104:864–879.