1,070
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Molecular imaging in management of colorectal metastases by the interventional oncologist

ORCID Icon, ORCID Icon & ORCID Icon
Pages 675-681 | Received 05 May 2021, Accepted 18 Oct 2021, Published online: 24 Apr 2022

References

  • Siegel, RL, Miller, KD, Jemal A. Cancer statistics, 2020. CA A Cancer J Clin. 2020;70:7–30.
  • National Comprehensive Cancer Network. NCCN guidelines for patients- colon cancer. 2018. Available from: https://www.nccn.org/patients/guidelines/content/PDF/colon-patient.pdf
  • Ko C-C, Yeh L-R, Kuo Y-T, et al. Imaging biomarkers for evaluating tumor response: RECIST and beyond. Biomark Res. 2021;9:52.
  • Hunt SJ, Seraj SM, Alavi A. PET assessment of immune effects from interventional oncology procedures. PET Clin. 2019;14:477–485.
  • Lam MGEH, Hunt SJ, El-Haddad GE, et al. Evolving role of PET in interventional Radiology-Based oncology procedures. PET Clin. 2019;14:xiii–xxiv.
  • Expert Panel on Gastrointestinal Imaging:, Fowler KJ, Kaur H, et al. ACR appropriateness criteria® pretreatment staging of colorectal cancer. J Am Coll Radiol. 2017;14:S234–S244.
  • Maffione AM, Lopci E, Bluemel C, et al. Diagnostic accuracy and impact on management of (18)F-FDG PET and PET/CT in colorectal liver metastasis: a meta-analysis and systematic review. Eur J Nucl Med Mol Imaging. 2015;42:152–163.
  • Petersen RK, Hess S, Alavi A, et al. Clinical impact of FDG-PET/CT on colorectal cancer staging and treatment strategy. Am J Nucl Med Mol Imaging. 2014;4(5):471–482.
  • Ozis SE, Soydal C, Akyol C, et al. The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in the primary staging of rectal cancer. World J Surg Oncol. 2014;12:26.
  • Ruers TJM, Wiering B, van der Sijp JRM, et al. Improved selection of patients for hepatic surgery of colorectal liver metastases with (18)F-FDG PET: a randomized study. J Nucl Med. 2009;50(7):1036–1041.
  • Berger KL, Nicholson SA, Dehdashti F, et al. FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. AJR Am J Roentgenol. 2000;174(4):1005–1008.
  • Bae SU, Won KS, Song B-I, et al. Accuracy of F-18 FDG PET/CT with optimal cut-offs of maximum standardized uptake value according to size for diagnosis of regional lymph node metastasis in patients with rectal cancer. Cancer Imaging. 2018;18(1):32.
  • Dahmarde H, Parooie F, Salarzaei M. Is 18F-FDG PET/CT an accurate way to detect lymph node metastasis in colorectal cancer: a systematic review and Meta-Analysis. Contrast Media Mol Imaging. 2020;2020:5439378.
  • Daza JF, Solis NM, Parpia S, et al. A Meta-analysis exploring the role of PET and PET-CT in the management of potentially resectable colorectal cancer liver metastases. Eur J Surg Oncol. 2019;45(8):1341–1348.
  • Serrano PE, Gu C-S, Moulton C-A, et al. Effect of PET-CT on disease recurrence and management in patients with potentially resectable colorectal cancer liver metastases. Long-term results of a randomized controlled trial. J Surg Oncol. 2020;121(6):1001–1006.
  • Arslan E, Aksoy T, Gürsu RU, et al. The prognostic value of 18F-FDG PET/CT and KRAS mutation in colorectal cancers. Mol Imaging Radionucl Ther. 2020;29(1):17–24.
  • Kawada K, Toda K, Nakamoto Y, et al. Relationship between 18F-FDG PET/CT scans and KRAS mutations in metastatic colorectal cancer. J Nucl Med. 2015;56(9):1322–1327.
  • Shady W, Petre EN, Vakiani E, et al. Kras mutation is a marker of worse oncologic outcomes after percutaneous radiofrequency ablation of colorectal liver metastases. Oncotarget. 2017;8(39):66117–66127.
  • Popovic M, Talarico O, van den Hoff J, et al. KRAS mutation effects on the 2-[18F]FDG PET uptake of colorectal adenocarcinoma metastases in the liver. EJNMMI Res. 2020;10(1):142.
  • Gulec SA, Suthar RR, Barot TC, et al. The prognostic value of functional tumor volume and total lesion glycolysis in patients with colorectal cancer liver metastases undergoing 90Y selective internal radiation therapy plus chemotherapy. Eur J Nucl Med Mol Imaging. 2011;38:1289–1295.
  • Edalat F, Camacho JC, Kokabi N, et al. Standardized added metabolic activity predicts survival after intra-arterial resin-based 90Y radioembolization therapy in unresectable chemorefractory metastatic colorectal cancer to the liver. Clin Nucl Med. 2016;41:e76–e81.
  • Levy EB, Fiel MI, Hamilton SR, et al. State of the art: toward improving outcomes of lung and liver tumor biopsies in clinical trials-A multidisciplinary approach. J Clin Oncol. 2020;38(14):1633–1640.
  • Tatli S, Gerbaudo VH, Mamede M, et al. Abdominal masses sampled at PET/CT-guided percutaneous biopsy: initial experience with registration of prior PET/CT images. Radiology. 2010;256:305–311.
  • Kishore SA, Drabkin MJ, Sofocleous CT. Fluorodeoxyglucose-PET for ablation treatment planning, intraprocedural monitoring, and response. PET Clin. 2019;14:427–436.
  • Venkatesan AM, Kadoury S, Abi-Jaoudeh N, et al. Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology. 2011;260:848–856.
  • Yokoyama K, Ikeda O, Kawanaka K, et al. Comparison of CT-guided percutaneous biopsy with and without registration of prior PET/CT images to diagnose mediastinal tumors. Cardiovasc Intervent Radiol. 2014;37:1306–1311.
  • Lei P, Dandekar O, Widlus D, et al. Incorporation of preprocedural PET into CT-guided radiofrequency ablation of hepatic metastases: a nonrigid image registration validation study. J Digit Imaging. 2010;23:780–792.
  • Guralnik L, Rozenberg R, Frenkel A, et al. Metabolic PET/CT-guided lung lesion biopsies: impact on diagnostic accuracy and rate of sampling error. J Nucl Med. 2015;56:518–522.
  • Klaeser B, Mueller MD, Schmid RA, et al. PET-CT-guided interventions in the management of FDG-positive lesions in patients suffering from solid malignancies: initial experiences. Eur Radiol. 2009;19(7):1780–1785.
  • Aparici CM, Aslam R, Win AZ. Initial experience of utilizing real-time intra-procedural PET/CT biopsy. J Clin Imaging Sci. 2014;4:54.
  • Cornelis F, Silk M, Schoder H, et al. Performance of intra-procedural 18-fluorodeoxyglucose PET/CT-guided biopsies for lesions suspected of malignancy but poorly visualized with other modalities. Eur J Nucl Med Mol Imaging. 2014;41(12):2265–2272.
  • Cornelis FH, Petre EN, Vakiani E, et al. Immediate postablation 18F-FDG injection and corresponding SUV are surrogate biomarkers of local tumor progression after thermal ablation of colorectal carcinoma liver metastases. J Nucl Med. 2018;59(9):1360–1365.
  • Fanchon LM, Dogan S, Moreira AL, et al. Feasibility of in situ, high-resolution correlation of tracer uptake with histopathology by quantitative autoradiography of biopsy specimens obtained under 18F-FDG PET/CT guidance. J Nucl Med. 2015;56(4):538–544.
  • Kirov AS, Fanchon LM, Seiter D, et al. Technical note: ccintillation well counters and particle counting digital autoradiography devices can be used to detect activities associated with genomic profiling adequacy of biopsy specimens obtained after a low activity 18 F-FDG injection. Med Phys. 2018;45(5):2179–2185.
  • Sainani NI, Shyn PB, Tatli S, et al. PET/CT-guided radiofrequency and cryoablation: is tumor fluorine-18 fluorodeoxyglucose activity dissipated by thermal ablation? J Vasc Interv Radiol. 2011;22:354–360.
  • Shyn PB, Casadaban LC, Sainani NI, et al. Intraprocedural ablation margin assessment by using ammonia perfusion PET during FDG PET/CT-guided liver tumor ablation: a pilot study. Radiology. 2018;288(1):138–145.
  • Ryan ER, Sofocleous CT, Schöder H, et al. Split-dose technique for FDG PET/CT-guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology. 2013;268(1):288–295.
  • Cornelis F, Sotirchos V, Violari E, et al. 18F-FDG PET/CT is an immediate imaging biomarker of treatment success after liver metastasis ablation. J Nucl Med. 2016;57:1052–1057.
  • Shyn PB, Cubre AJ, Catalano PJ, et al. F-18 FDG perfusion PET: intraprocedural assessment of the liver tumor ablation margin. Abdom Radiol (NY). 2021;46:3437–3447.
  • Maas M, Beets-Tan R, Gaubert J-Y, et al. Follow-up after radiological intervention in oncology: ECIO-ESOI evidence and consensus-based recommendations for clinical practice. Insight Imaging. 2020;11(1):83.
  • Benson AB, Venook AP, Al-Hawary MM, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19(3):329–359.
  • Pinker K, Riedl C, Weber WA. Evaluating tumor response with FDG PET: updates on PERCIST, comparison with EORTC criteria and clues to future developments. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):55–66.
  • Maas M, Rutten IJG, Nelemans PJ, et al. What is the most accurate whole-body imaging modality for assessment of local and distant recurrent disease in colorectal cancer? A meta-analysis : imaging for recurrent colorectal cancer. Eur J Nucl Med Mol Imaging. 2011;38(8):1560–1571.
  • Nielsen K, van Tilborg AAJM, Scheffer HJ, et al. PET-CT after radiofrequency ablation of colorectal liver metastases: suggestions for timing and image interpretation. Eur J Radiol. 2013;82:2169–2175.
  • Kuehl H, Antoch G, Stergar H, et al. Comparison of FDG-PET, PET/CT and MRI for follow-up of colorectal liver metastases treated with radiofrequency ablation: initial results. Eur J Radiol. 2008;67:362–371.
  • Sahin DA, Agcaoglu O, Chretien C, et al. The utility of PET/CT in the management of patients with colorectal liver metastases undergoing laparascopic radiofrequency thermal ablation. Ann Surg Oncol. 2012;19:850–855.
  • Bonichon F, Palussière J, Godbert Y, et al. Diagnostic accuracy of 18F-FDG PET/CT for assessing response to radiofrequency ablation treatment in lung metastases: a multicentre prospective study. Eur J Nucl Med Mol Imaging. 2013;40:1817–1827.
  • Szyszko T, Al-Nahhas A, Canelo R, et al. Assessment of response to treatment of unresectable liver tumours with 90Y microspheres: value of FDG PET versus computed tomography. Nucl Med Commun. 2007;28(1):15–20.
  • Zerizer I, Al-Nahhas A, Towey D, et al. The role of early 18F-FDG PET/CT in prediction of progression-free survival after 90Y radioembolization: comparison with RECIST and tumour density criteria. Eur J Nucl Med Mol Imaging. 2012;39:1391–1399.
  • Sabet A, Meyer C, Aouf A, et al. Early post-treatment FDG PET predicts survival after 90Y microsphere radioembolization in liver-dominant metastatic colorectal cancer. Eur J Nucl Med Mol Imaging. 2015;42(3):370–376.
  • Michl M, Lehner S, Paprottka PM, et al. Use of PERCIST for prediction of progression-free and overall survival after radioembolization for liver metastases from pancreatic cancer. J Nucl Med. 2016;57(3):355–360.