6,436
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Strong correlation between specific heat capacity and water content in human tissues suggests preferred heat deposition in malignant tumors upon electromagnetic irradiation

ORCID Icon &
Pages 987-997 | Received 27 Jan 2022, Accepted 13 Apr 2022, Published online: 24 Jul 2022

References

  • Peeken JC, Vaupel P, Combs SE. Integrating hyperthermia into modern radiation oncology: What evidence is necessary? Front Oncol. 2017;7:132.
  • Elming PB, Sorensen BS, Oei AL, et al. Hyperthermia: the optimal treatment to overcome radiation resistant hypoxia. Cancers. 2019;11(1):60.
  • Notter M, Thomsen AR, Nitsche M, et al. Combined wIRA-hyperthermia and hypofractionated re-irradiation in the treatment of locally recurrent breast cancer: evaluation of therapeutic outcome based on a novel size classification. Cancers. 2020;12(3):606.
  • Datta NR, Kok HP, Crezee H, et al. Integrating loco-regional hyperthermia into the current oncology practice: SWOT and TOWS analyses. Front Oncol. 2020;10:819.
  • Datta NR, Jain BNM, Mathi Z, et al. Hyperthermia: a potential came-changer in the management of cancers in low-middle-income group countries. Cancers. 2022;14(2):315.
  • Lee SY, Fiorentini G, Szasz AM, et al. Quo vadis oncological hyperthermia. Front Oncol. 2020;10:1690.
  • Schildkopf P, Ott OJ, Frey B, et al. Biological rationales and clinical applications of temperature controlled hyperthermia-implications for multimodal cancer treatments. Curr Med Chem. 2010;17(27):3045–3057.
  • Storm FK, Harrison WH, Elliot RS, et al. Normal tissue and solid tumor effects of hyperthermia in animal models and clinical trials. Cancer Res. 1979;39(6 Pt 2):2245–2251.
  • Song CW. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res. 1984;44(10):4721s–4730s.
  • Vaupel PW, Kelleher DK. Pathophysiological and vascular characteristics of tumours and their importance for hyperthermia: heterogeneity is the key issue. Int J Hyperthermia. 2010;26(3):211–223.
  • Wust P, Stahl H, Löffel J, et al. Clinical, physiological and anatomical determinants for radiofrequency hyperthermia. Int J Hyperthermia. 1995;11(2):151–167.
  • Vaupel P. Blood flow and oxygenation status of head and neck carcinomas. Adv Exp Med Biol. 1997;428:89–95.
  • Hermans R, Lambin P, van der Goten A, et al. Tumoural perfusion as measured by dynamic computed tomography in head and neck carcinoma. Radiother Oncol. 1999;53(2):105–111.
  • Rich LJ, Winslow TB, Alberico RA, et al. Enhanced tumour perfusion following treatment with water-filtered IR-a radiation to the thorax in a patient with head and neck cancer. Int J Hyperthermia. 2016;32(5):539–542.
  • Vaupel P. Vascularization, blood flow, oxygenation, tissue pH, and bioenergetic status of human breast cancer. Adv Exp Med Biol. 1997;411:243–254.
  • van den Berg CAT, van de Kamer JB, de Leeuw AAC, et al. Towards patient specific thermal modelling of the prostate. Phys Med Biol. 2006;51(4):809–825.
  • Vaupel P, Kelleher DK. Blood flow and oxygenation status of prostate cancers. Adv Exp Med Biol. 2013;765:299–305.
  • Vaupel PW, Kelleher DK. Blood flow and associated pathophysiology of uterine cervix cancers: characterisation and relevance for localised hyperthermia. Int J Hyperthermia. 2012;28(6):518–527.
  • Wust P. Thermotherapy in oncology. Boston (MA): Uni-Med Science Publisher; 2016.
  • Lang J, Erdmann B, Seebass M. Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans Biomed Eng. 1999;46(9):1129–1138.
  • Christophi C, Winkworth A, Muralihdaran V, et al. The treatment of malignancy by hyperthermia. Surg Oncol. 1998;7(1–2):83–90.
  • Kiricuta IC, Simplăceanu V. Tissue water content and nuclear magnetic resonance in normal and tumor tissues. Cancer Res. 1975;35(5):1164–1167.
  • Greenstein JP. Biochemistry of cancer. New York (NY): Academic Press; 1947.
  • Dick JM. Water as a reactant in the differential expression of proteins in cancer. Comput Syst Oncol. 2020;1:e1007.
  • Gersing G. Monitoring temperature-induced changes in tissue during hyperthermia by impedance methods. Ann NY Acad Sci. 1999;873:13–20.
  • Kelleher DK, Vaupel P. Vascular effects of localized hyperthermia. In: Baronzio GF, Hager ED, editor. Hyperthermia in cancer treatment: a primer. New York (NY): Springer Science; 2006. p. 99–109.
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93–122.
  • Giordano MA, Gutierrez G, Rinaldi C. Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia. Int J Hyperthermia. 2010;26(5):475–484.
  • Wärmekapazitäten. Available from: https://de.wikibooks.org/wiki/Tabellensammlung_Chemie/_spezifischeWärmekapazitäten
  • Available from: https://www.chemie.de/lexikon/Wasser_%28Stoffdaten%29.html
  • Brewer PG, Peltzer ET. The molecular basis for the heat capacity and thermal expansion of natural waters. Geophys Res Lett. 2019;46(22):13227–13213.
  • Sun H, Feistel R, Koch M, et al. New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid. Deep-Sea Res I. 2008;55(10):1304–1310.
  • Grunberg L. Properties of sea water concentrates. International symposium on fresh water from the sea (3rd: 1970: Dubrovnik, Yugoslavia). Proceedings of the International Symposium on Fresh Water from the Sea. Athens [s.n.]. Vol. 1. 1970. p. 31–39.
  • Giering K, Lamprecht I, Minet O. Specific heat capacities of human and animal tissues. Proc SPIE. 1996;2624:188–197.
  • McIntosh RL, Anderson V. A comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys Rev Lett. 2010;05(03):129–151.
  • Thermal conductivity. In Tissue properties. ITIS Foundation. Database. [cited 2021 Dec 15]. Available from: https://itis.swiss/vitrual-population/tissue properties/database/thermal-conductivity/
  • Ahuja AS, Prasad KN, Hendee WR, et al. Thermal conductivity and diffusivity of neuroblastoma tumor cells. Med Phys. 1978;5(5):418–421.
  • Vaupel P. Effect of percentual water content in tissues and liquids on the diffusion coefficients of O2, CO2, N2, and H2. Pflugers Arch. 1976;361(2):201–204.
  • Grote J, Süsskind R, Vaupel P. Oxygen diffusivity in tumor tissue (DS-Carcinosarcoma) under temperature conditions within the range of 20–40 °C. Pflugers Arch. 1977;372(1):37–42.
  • Krüger W, Gersing E, Vaupel P. Electrical impedance spectroscopy for in vivo detection of structural changes in experimental tumors during local hyperthermia. In: Gersing E, editor. Proceedings of IXth international conference electrical bio-impedance, 225–228. Göttingen, Germany: Goltze-Verlag; 1995.
  • Gersing E, Kelleher DK, Vaupel P. Tumour tissue monitoring during photodynamic and hyperthermic treatment using bioimpedance spectroscopy. Physiol Meas. 2003;24(2):625–637.
  • Britannica Online Encyclopedia. Water. Structure of water. Liquid water. 2021. Available from: https://www.britannica.com/print/article/636754
  • Müller W, Piazena H, Vaupel P. From sun to wIRA. In: Vaupel P, editor. Water-filtered infrared-A (wIRA) irradiation: from research to clinical settings. Cham, Switzerland: Springer Nature; 2022. p. 17–32.
  • Kaatze U, Behrends R, Pottel R. Hydrogen network fluctuations and dielectric spectrometry of liquids. J Non-Crystalline Solids. 2002;305:9–28.
  • Lenk R. Dielektrische Verluste. In: Lenk R, editor. Brockhaus ABC Physik. Vol. 1. Leipzig, Germany: Brockhaus Verlag; 1989. ISBN 3-325-00191-2.
  • Schulze R. Strahlenklima der Erde. In: Brügel W, Jäger R, editors. Wissenschaftliche Fortschrittsberichte. Bd 73. Darmstadt, Germany: Dr. Dietrich Steinkopf-Verlag; 1970.
  • ISO 20473. Optics and photonics – spectral bands. 2007.
  • Stauffer PR. Evolving technology for thermal therapy of cancer. Int J Hyperthermia. 2005;21(8):731–744.
  • Trefná HD, Crezee H, Schmidt M, et al. Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. Int J Hyperthermia. 2017;33(4):471–482.
  • Dobsicek Trefná HD, Crezee J, Schmidt M, et al. Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices. Strahlenther Onkol. 2017;193(5):351–366.
  • Hale GM, Querry MR. Optical constants of water in the 200 nm to 200 micron wavelength region. Appl Opt. 1973;12(3):555–563.
  • Downing HD, Williams D. Optical constants of water in the infrared. J Geophys Res. 1975;80(12):1656–1661.
  • Palmer KF, Williams D. Optical properties of water in the near infrared. J Opt Soc Am. 1974;64(8):1107–1110.
  • Water absorption spectrum. [cited 2021 Dec 10]. Available from: http://www1.lsbu.ac.uk./water/water_vibrational_spectrum.html#blue
  • Chaplin M. 2021. Water absorption spectrum. Water, structure and science. Available from: http://www.acamedia.info/sciences/J_G/envrad/microwaves/index.htm
  • Warren SG. Optical properties of ice and snow. Philos Trans A Math Phys Eng Sci. 2019;377(2146):20180161.
  • Chaplin MF. A proposal for the structuring of water. Biophys Chem. 2000;83(3):211–221.
  • Debye P. Polare Molekeln. Leipzig: S. Hirzel-Verlag/polar molecules. New York (NY): The Chemical Catalogue Company; 1929.
  • Lunkenheimer P, Emmert S, Gulich R, et al. Electromagnetic-radiation absorption of water. Phys Rev E. 2017;96:1–10.
  • Gadani DH, Rana VA, Bhatnagar SP, et al. Effect of salinity on the dielectric properties of water. Indian J Pure Appl Phys. 2012;50:405–410.
  • Pethig R, Kell DB. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol. 1987;32(8):933–970.
  • Ebert H. Physikalisches Taschenbuch, 5. In: Ebert H, editor. Auflage. Braunschweig: Vieweg-Verlag; 1978.
  • Foster KR, Schepps JL, Schwan HP. Microwave dielectric relaxation in muscle. A second look. Biophys J. 1980;29(2):271–282.
  • Schepps JL, Foster KR. The UHF and microwave dielectric properties of normal and tumour tissues: variation in dielectric properties with tissue water content. Phys Med Biol. 1980;25(6):1149–1159.
  • Kok HP, Crezee J. A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Int J Hyperthermia. 2017;33(4):378–386.
  • IT’IS Foundation. Tissue properties. [cited 2021 Dec 15]. Available from: https://itis.swiss/virtual-population/tissueproperties/database/heat-capacity/
  • Hasgall PA, Di Gennaro F, Baumgartner C, et al. IT'IS database for thermal and electromagnetic parameters of biological tissues. Version 4.1, February 22, 2022. DOI:10.13099/VIP21000-04-1. https://itis.swiss/virtual-population/tissue-properties/overview/
  • Warner RR, Myers MC, Taylor DA. Electron probe analysis of human skin: determination of the water concentration profile. J Invest Dermatol. 1988;90(2):218–224.
  • Chu DZJ, Yamanashi WS, Frazer J, et al. Proton NMR of human breast tumors: correlation with clinical prognostic parameters. J Surg Oncol. 1987;36(1):1–4.
  • Tromberg BJ, Shah N, Lanning R, et al. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia. 2000;2(1–2):26–40.
  • Spinelli L, Torricelli A, Pifferi A, et al. Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography. J Biomed Opt. 2004;9:1137–1142.
  • Cerussi A, Shah N, Hsiang D, et al. In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt. 2006;11(4):044005.
  • Brooksby B, Pogue BW, Jiang S, et al. Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography. Proc Natl Acad Sci USA. 2006;103(23):8828–8833.
  • Chung SH, Cerussi AE, Klifa C, et al. In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy. Phys Med Biol. 2008;53(23):6713–6727.
  • Boyd N, Martin L, Chavez S, et al. Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol. 2009;10(6):569–580.
  • Wang J, Pogue BW, Jiang S, et al. Near-infrared tomography of breast cancer hemoglobin, water, lipid, and scattering using combined frequency domain and CW measurement. Opt Lett. 2010;35(1):82–84.
  • Quarto G, Spinelli L, Pifferi A, et al. Estimate of tissue composition in malignant and benign breast lesions by time-domain optical mammography. Biomed Opt Express. 2014;5(10):3684–3698.
  • Hennessey S, Huszti E, Gunasekura A, et al. Bilateral symmetry of breast tissue composition by magnetic resonance in young women and adults. Cancer Causes Control. 2014;25(4):491–497.
  • Martellosio A, Pasian M, Bozzi M, et al. 0.5-50 GHz dielectric characterization of breast cancer tissues. Electron Lett. 2015;51(13):974–975.
  • Taroni P, Paganoni AM, Ieva F, et al. Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: a pilot study. Sci Rep. 2017;7:40683.
  • Ohmae E, Yoshizawa N, Yoshimoto K, et al. Comparison of lipid and water contents by time-domain diffuse optical spectroscopy and dual-energy computed tomography in breast cancer patients. Appl Sci. 2019;9(7):1482.
  • Giering K, Lamprecht I, Minet O, et al. Determination of the specific heat capacity of healthy and tumorous human tissue. Thermochim Acta. 1995;251:199–205.
  • Chanmugam A, Hatwar R, Herman C. Thermal analysis of cancerous breast model. Int Mech Eng Congress Expo. 2012;2012:134–143.
  • Andersen C. In vivo estimation of water content in cerebral white matter of brain tumour patients and normal individuals: towards a quantitative brain oedema definition. Acta Neurochir (Wien). 1997;139(3):249–256.
  • Whittall KP, MacKay AL, Graeb DA, et al. In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med. 1997;37(1):34–43.
  • Fatouros PP, Marmarou A. Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values. J Neurosurg. 1999;90(1):109–115.
  • Tong Z, Yamaki T, Harada K, et al. In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magn Reson Imaging. 2004;22(5):735–742.
  • Streitberger KJ, Lilaj L, Schrank F, et al. How tissue fluidity influences brain tumor progression. Proc Natl Acad Sci USA. 2020;117(1):128–134.
  • Sano F, Washio T, Matsumae M. Measurements of specific heat capacities required to build computer simulation models for laser thermotherapy of brain lesions. Tokai J Exp Clin Med. 2019;44(4):80–84.
  • Tronnier H. Der Hydratationszustand der Haut. J Soc Cosmet Chem. 1981;32:175–192.
  • Blank IH, Moloney J, Emslie AG, et al. The diffusion of water across the stratum corneum as a function of its water content. J Invest Dermatol. 1984;82(2):188–194.
  • Woodward RM, Cole BE, Wallace VP, et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Med Biol. 2002;47(21):3853–3863.
  • Nakagawa N, Matsumoto M, Sakai S. In vivo measurement of the water content in the dermis by confocal Raman spectroscopy. Skin Res Technol. 2010;16(2):137–141.
  • Gniadecka M, Nielsen OF, Wulf HC. Water content and structure in malignant and benign skin tumours. J Mol Struct. 2003;661–662(2):405–410.
  • Mehta P, Chand K, Narayanswamy D, et al. Microwave reflectometry as a novel diagnostic tool for detection of skin cancers. IEEE Trans Instrum Meas. 2006;55(4):1309–1316.
  • Taeb A, Gigoyan S, Safavi‐Naeini S. Millimetre-wave waveguide reflectometers for early detection of skin cancer. IET Microw Antennas Propagat. 2013;7(14):1182–1186.
  • Mohammed BJ, Naqvi SAR, Manoufali M, et al. Changes in epidermal dielectric properties due to skin cancer across the band 1 to 50 GHz. In: Conference Australian Microwave Symposium. Piscataway (NJ): IEEE; 2018.
  • Provyn S, Clarys JP, Wallace J, et al. Quality control, accuracy, and prediction capacity of dual energy X-ray absorptiometry variables and data acquisition. J Physiol Anthropol. 2008;27(6):317–323.
  • Popovic ME, Minceva M. Thermodynamic properties of human tissues. Therm Sci. 2020;24(6 Part B):4115–4133.
  • Lentner C. Geigy scientific tables. 8th ed., Vol. 1. Basle, Switzerland: Ciba Geigy; 1981.
  • Wang M, Yuan F, Wei Y, et al. Hepatocellular carcinoma: in vivo evaluation of water percentage as a prognostic biomarker using magnetic resonance imaging 3D-VIBE multiecho Dixon. Cancer Biother Radiopharm. 2018;33(7):300–306.
  • Ueda J, Kobayashi Y, Kenko Y, et al. Distribution of water, fat, and metals in normal liver and in liver metastases influencing attenuation on computed tomography. Acta Radiol. 1988;29(1):33–39.
  • Agafonkina IV, Belozerov AG, Vasilyev AO, et al. Thermal properties of human soft tissue and its equivalents in a wide low temperature range. J Eng Phys Thermophy. 2021;94(1):233–246.
  • Bianchi L, Cavarzan F, Ciampitti L, et al. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. Int J Hyperthermia. 2022;39(1):297–340.
  • Ross KFA, Gordon RE. Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance. J Microsc. 1982;128(Pt 1):7–21.
  • Penet MF, Kakkad S, Wildes F, et al. Water and collagen content are high in pancreatic cancer: implications for quantitative metabolic imaging. Front Oncol. 2020;10(599204):599204.
  • Buckley DL, Roberts C, Parker GJM, et al. Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging – initial experience. Radiology. 2004;233(3):709–715.
  • Padhani AR, Gapinski CJ, Macvicar DA, et al. Dynamic contrast enhanced MRI of prostate cancer. Correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol. 2000;55(2):99–109.
  • Ali JH, Wang WB, Zevallos M, et al. Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues. Technol Cancer Res Treat. 2004;3(5):491–497.
  • Han D, Choi MH, Lee YJ, et al. Feasibility of novel tree-dimensional magnetic resonance fingerprinting of the prostate gland: Phantom and clinical studies. Korean J Radiol. 2021;22(8):1332–1340.
  • Lee CH, Hung LC. Quantitative T2-mapping using MRI for detection of prostate malignancy: a systematic review of the literature. Acta Radiol. 2019;60(9):1181–1189.
  • Woodard HQ, White DR. The composition of body tissues. Br J Radiol. 1986;59(708):1209–1219.
  • Rauen HM. Biochemisches Taschenbuch (E-Book). Berlin, Heidelberg, Germany: Springer; 2013.
  • Ghita A, Hubbard T, Matousek P, et al. Noninvasive detection of differential water content inside biological samples using deep Raman spectroscopy. Anal Chem. 2020;92(14):9449–9453.
  • Gullino PM, Grantham FH, Smith SH. The interstitial water space of tumors. Cancer Res. 1965;25:727–731.
  • Vaupel P, Müller-Klieser W. Interstitieller Raum und Mikromilieu in malignen Tumoren. Progr Appl Microcirc. 1983;2:78–90.
  • Aronen HJ, Pardo FS, Kennedy DN, et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res. 2000;6(6):2189–2200.
  • Gullino PM. Extracellular compartments of solid tumors. In Becker FF, editor. Cancer. Vol. 3. New York (NY): Plenum Press; 1975. p. 327–354.
  • Vaupel P. Pathophysiology of solid tumors. In: Molls M, Vaupel P, Nieder C, Anscher MS, editors. The impact of tumor biology on cancer treatment and multidisciplinary strategies. Berlin, Heidelberg, Germany: Springer; 2009. p. 51–92.
  • Barroso EM, Smits RWH, Bakker Schut TC, et al. Discrimination between oral cancer and healthy tissue based on water content determined by Raman spectroscopy. Anal Chem. 2015;87(4):2419–2426.
  • Wahaia F, Kasalynas I, Minkevicius L, et al. Terahertz spectroscopy and imaging for gastric cancer diagnosis. J Spectr Imaging. 2020;9:a2.
  • Ganeshan B, Miles K, Afaq A, et al. Texture analysis of fractional water content images acquired during PET/MRI: initial evidence for an association with total lesion glycolysis, survival and gene mutation profile in primary colorectal cancer. Cancers. 2021;13(11):2715.
  • Buengner M. Untersuchungen über die Zusammensetzung des menschlichen Fettgewebes. Z Ges Exp Med. 1929;67(1):147–165.
  • Thomas LW. The chemical composition of adipose tissue of man and mice. Q J Exp Physiol Cogn Med Sci. 1962;47:179–188.
  • Heymsfield SB, Stevens V, Noel R, et al. Biochemical composition of muscle in normal and semistarved human subjects: relevance to anthropometric measurements. Am J Clin Nutr. 1982;36(1):131–142.
  • Talso PJ, Spafford N, Blaw M. The metabolism of water and electrolytes on congestive heart failure. 1. The electrolyte and water content of normal human skeletal muscle. Translat Res. 1953;41(2):P281–286.
  • Lozano PF, Scholze M, Babian C, et al. Water-content related alterations in macro and micro scale tendon biomechanics. Sci Rep. 2019;9(1):7887.
  • Shiguetomi-Medina JM, Ramirez JL, Stodkilde-Jorgensen H, et al. Systematized water content calculation in cartilage using T1-mapping MR estimations: design and validation of a mathematical model. J Orthopaed Traumatol. 2016;18:217–220.
  • Giering K, Minet O, Lamprecht I, et al. Review of thermal properties of biological tissues. SPIE Proc PM. 1995;25:45–65.
  • Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41(11):2231–2249.
  • Mohammadi A, Bianchi L, Asadi S, et al. Measurements of ex vivo liver, brain and pancreas thermal properties as function of temperature. Sensors. 2021;21(12):4236.
  • Patch SK, Rao N, Kelly H, et al. Specific heat capacity of freshly excised prostate specimens. Physiol Meas. 2011;32(11):N55–N64.
  • Cooper TE, Trezek GJ. Correlation of thermal properties of some human tissue with water content. Aerosp Med. 1971;42(1):24–27.
  • Duck FA. Physical properties of tissues – a comprehensive reference book. San Diego (CA): Academic Press; 1990.
  • Takata AN, Zanevald L, Richter W. 1977. Laser-induced thermal damage in skin. USAF School of Aerospace Med., Brooks AFB, TX Rep. SAM-TR-77-38.
  • Vaupel P, Horsman MR. Tumour perfusion and associated physiology: characterization and significance for hyperthermia. Int J Hyperthermia. 2010;26(3):209–210.
  • Dewhirst MW. 2021. The inextricable and exasperating link between hyperthermia and tumor hypoxia. (Lecture) 13th International Congress of Hyperthermic Oncology, Rotterdam (NL). Book of Abstract.