500
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gold nanobipyramids-based laser-activated sealants for effective skin sealing and repair

, , &
Article: 2301035 | Received 21 Aug 2023, Accepted 27 Dec 2023, Published online: 06 Feb 2024

References

  • Xia K, Zhang L, Huang Y, et al. Preparation of gold nanorods and their applications in photothermal therapy. J Nanosci Nanotechnol. 2015;15(1):63–73. doi: 10.1166/jnn.2015.9586.
  • Vines JB, Yoon J-H, Ryu N-E, et al. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019;7:167. doi: 10.3389/fchem.2019.00167.
  • Huang H-C, Barua S, Sharma G, et al. Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 2011;155(3):344–357. doi: 10.1016/j.jconrel.2011.06.004.
  • Huang H-C, Ramos J, Grandhi TSP, et al. Gold nanoparticles in cancer imaging and therapeutics. Nano LIFE. 2010;01(03n04):289–307. doi: 10.1142/S1793984410000274.
  • Shukla R, Bansal V, Chaudhary M, et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21(23):10644–10654. doi: 10.1021/la0513712.
  • MacLeod MJ, Goodman AJ, Ye H-Z, et al. Robust gold nanorods stabilized by bidentate N-heterocyclic-carbene-thiolate ligands. Nat Chem. 2019;11(1):57–63. doi: 10.1038/s41557-018-0159-8.
  • Li J, Zhu B, Zhu Z, et al. Simple and rapid functionalization of gold nanorods with oligonucleotides using an mPEG-SH/tween 20-Assisted approach. Langmuir. 2015;31(28):7869–7876. doi: 10.1021/acs.langmuir.5b01680.
  • Amin MU, Li L, Zhang R, et al. Rapid and ultrasensitive solution-based SERS detection of drug additives in aquaculture by using polystyrene sulfonate modified gold nanobipyramids. Talanta. 2023;251:123800. doi: 10.1016/j.talanta.2022.123800.
  • Ali MR, Rahman MA, Wu Y, et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc Natl Acad Sci U S A. 2017;114(15):E3110–E3118.
  • Ali MRK, Wu Y, Tang Y, et al. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc Natl Acad Sci U S A. 2017;114(28):E5655–E5663.
  • Choi WI, Kim J-Y, Kang C, et al. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano. 2011;5(3):1995–2003. doi: 10.1021/nn103047r.
  • Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008;269(1):57–66. doi: 10.1016/j.canlet.2008.04.026.
  • von Maltzahn G, Park J-H, Agrawal A, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009;69(9):3892–3900. doi: 10.1158/0008-5472.CAN-08-4242.
  • Huang HC, Rege K, Heys JJ. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano. 2010;4(5):2892–2900. doi: 10.1021/nn901884d.
  • Huang H-C, Yang Y, Nanda A, et al. Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices. Nanomedicine (Lond). 2011;6(3):459–473. doi: 10.2217/nnm.10.133.
  • Liu X, Zhou W, Wang T, et al. Highly localized, efficient, and rapid photothermal therapy using gold nanobipyramids for liver cancer cells triggered by femtosecond laser. Sci Rep. 2023;13(1):3372. doi: 10.1038/s41598-023-30526-x.
  • Wu X, Mu L, Chen M, et al. Bifunctional gold nanobipyramids for photothermal therapy and temperature monitoring. ACS Appl Bio Mater. 2019;2(6):2668–2675. doi: 10.1021/acsabm.9b00344.
  • Chow TH, Li N, Bai X, et al. Gold nanobipyramids: an emerging and versatile type of plasmonic nanoparticles. Acc Chem Res. 2019;52(8):2136–2146. doi: 10.1021/acs.accounts.9b00230.
  • Li C, Mei E, Chen C, et al. Gold-Nanobipyramid-based nanotheranostics for Dual-Modality imaging-Guided phototherapy. ACS Appl Mater Interfaces. 2020;12(11):12541–12548. doi: 10.1021/acsami.0c00112.
  • Feng J, Chen L, Xia Y, et al. Bioconjugation of gold nanobipyramids for SERS detection and targeted photothermal therapy in breast cancer. ACS Biomater Sci Eng. 2017;3(4):608–618. doi: 10.1021/acsbiomaterials.7b00021.
  • Tabish TA, Dey P, Moska S, et al. Smart gold nanostructures for light mediated cancer theranostics: combining optical diagnostics with photothermal therapy. Adv Sci (Weinheim). 2020;7(15):1903441.
  • Bhardwaj H, Sumana G, Marquette CA. Gold nanobipyramids integrated ultrasensitive optical and electrochemical biosensor for aflatoxin B(1) detection. Talanta. 2021;222:121578. doi: 10.1016/j.talanta.2020.121578.
  • Mobed A, Hasanzadeh M, Seidi F. Anti-bacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: recent advances and challenges. RSC Adv. 2021;11(55):34688–34698. doi: 10.1039/d1ra06030a.
  • Urie R, Flake T, Rege K. Laser tissue welding in wound healing and surgical repair. In: Bioengineering in wound healing. World Scientific; 2017. p. 303–324.
  • Urie R, Ghosh D, Ridha I, et al. Inorganic nanomaterials for soft tissue repair and regeneration. Annu Rev Biomed Eng. 2018;20(1):353–374. doi: 10.1146/annurev-bioeng-071516-044457.
  • Huang HC, Walker CR, Nanda A, et al. Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders. ACS Nano. 2013;7(4):2988–2998. doi: 10.1021/nn303202k.
  • Urie R, Quraishi S, Jaffe M, et al. Gold nanorod-collagen nanocomposites as photothermal nanosolders for laser welding of ruptured porcine intestines. ACS Biomater Sci Eng. 2015;1(9):805–815. doi: 10.1021/acsbiomaterials.5b00174.
  • Mushaben M, Urie R, Flake T, et al. Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites. Lasers Surg Med. 2018;50(2):143–152. doi: 10.1002/lsm.22746.
  • Urie R, Guo C, Ghosh D, et al. Rapid soft tissue approximation and repair using laser-activated silk nanosealants. Adv Funct Mater. 2018;28(42):1802874. doi: 10.1002/adfm.201802874.
  • Urie R, McBride M, Ghosh D, et al. Antimicrobial laser-activated sealants for combating surgical site infections. Biomater Sci. 2021;9(10):3791–3803. doi: 10.1039/d0bm01438a.
  • Matteini P, Rossi F, Menabuoni L, et al. Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue. Lasers Surg Med. 2007;39(7):597–604. doi: 10.1002/lsm.20532.
  • Sandy-Hodgetts K, Carville K, Leslie GD. Determining risk factors for surgical wound dehiscence: a literature review. Int Wound J. 2015;12(3):265–275. doi: 10.1111/iwj.12088.
  • Liu X, Sprengers M, Nelemans PJ, et al. Risk factors for surgical site infections in dermatological surgery. Acta Derm Venereol. 2018;98(2):246–250. doi: 10.2340/00015555-2844.
  • Shupak RP, Blackmore S, Kim RY. Skin hypersensitivity following application of tissue adhesive (2-octyl cyanoacrylate). Baylor University Medical Center Proceedings. Vol. 34; 2021. p. 736–738. doi: 10.1080/08998280.2021.1935140.
  • Chateau D, Liotta A, Vadcard F, et al. From gold nanobipyramids to nanojavelins for a precise tuning of the plasmon resonance to the infrared wavelengths: experimental and theoretical aspects. Nanoscale. 2015;7(5):1934–1943. doi: 10.1039/c4nr06323f.
  • Zhao S, Tian Y, Liu W, et al. High and low molecular weight hyaluronic acid-coated gold nanobipyramids for photothermal therapy. RSC Adv. 2018;8(16):9023–9030. doi: 10.1039/c7ra11667e.
  • Huang H-C, Koria P, Parker SM, et al. Optically responsive gold nanorod-polypeptide assemblies. Langmuir. 2008;24(24):14139–14144. doi: 10.1021/la802842k.
  • Huang HC, Barua S, Kay DB, et al. Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. ACS Nano. 2009;3(10):2941–2952. doi: 10.1021/nn900947a.
  • Walker CR, Pushpavanam K, Nair DG, et al. Generation of polypeptide-templated gold nanoparticles using ionizing radiation. Langmuir. 2013;29(32):10166–10173. doi: 10.1021/la400567d.
  • Ramos J, Potta T, Scheideler O, et al. Parallel synthesis of poly(amino ether)-templated plasmonic nanoparticles for transgene delivery. ACS Appl Mater Interfaces. 2014;6(17):14861–14873. doi: 10.1021/am5017073.
  • Rockwood DN, Preda RC, Yücel T, et al. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6(10):1612–1631. doi: 10.1038/nprot.2011.379.
  • Ghosh D, Salinas CM, Pallod S, et al. Temporal evaluation of efficacy and quality of tissue repair upon laser-activated sealing. Bioeng Transl Med. 2023;8(2):e10412.
  • Scarabelli L, Sánchez-Iglesias A, Pérez-Juste J, et al. A tips and tricks practical guide to the synthesis of gold nanorods. J Phys Chem Lett. 2015;6(21):4270–4279. doi: 10.1021/acs.jpclett.5b02123.
  • Khlebtsov NG, Khlebtsov BN, Kryuchkova EV, et al. Universal determination of gold concentration in colloids with UV–vis spectroscopy. J Phys Chem C. 2022;126(45):19268–19276. doi: 10.1021/acs.jpcc.2c05843.
  • Abbas DB, Lavin CV, Fahy EJ, et al. Standardizing dimensionless cutometer parameters to determine in vivo elasticity of human skin. Adv Wound Care (New Rochelle). 2022;11(6):297–310. doi: 10.1089/wound.2021.0082.
  • Hara M, Ma T, Verkman AS. Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J Biol Chem. 2002;277(48):46616–46621. doi: 10.1074/jbc.M209003200.
  • Wang Y, Marshall KL, Baba Y, et al. Hyperelastic material properties of mouse skin under compression. PLoS One. 2013;8(6):e67439. doi: 10.1371/journal.pone.0067439.
  • Sánchez-Iglesias A, Winckelmans N, Altantzis T, et al. High-Yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J Am Chem Soc. 2017;139(1):107–110. doi: 10.1021/jacs.6b12143.
  • Chateau D, Desert A, Lerouge F, et al. Beyond the concentration limitation in the synthesis of nanobipyramids and other pentatwinned gold nanostructures. ACS Appl Mater Interfaces. 2019;11(42):39068–39076. doi: 10.1021/acsami.9b12973.
  • Nafisah S, Morsin M, Sanudin R, et al. Effect of additive acid on seeded growth of gold nanobipyramids. J Phys Chem Solids. 2021;148:109764. doi: 10.1016/j.jpcs.2020.109764.
  • Fang C, Zhao G, Xiao Y, et al. Facile growth of high-Yield gold nanobipyramids induced by chloroplatinic acid for high refractive index sensing properties. Sci Rep. 2016;6(1):36706. doi: 10.1038/srep36706.
  • Lee JH, Gibson KJ, Chen G, et al. Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals. Nat Commun. 2015;6(1):7571. doi: 10.1038/ncomms8571.
  • Ridha I, Basiri A, Godeshala S, et al. Chromophore-free sealing and repair of soft tissues using mid-infrared light-activated biosealants. Adv Funct Mater. 2021;31(6):2007811. doi: 10.1002/adfm.202007811.
  • Muller B, Mazza E, Schiestl C, et al. Longitudinal monitoring and prediction of long-term outcome of scar stiffness on pediatric patients. Burns Trauma. 2021;9:tkab028.
  • Fong SS, Hung LK, Cheng JC. The cutometer and ultrasonography in the assessment of postburn hypertrophic scar–a preliminary study. Burns. 1997;23 Suppl 1(Suppl 1):S12–S18. doi: 10.1016/S0305-4179(96)00095-2.
  • Nedelec B, Correa JA, Rachelska G, et al. Quantitative measurement of hypertrophic scar: interrater reliability and concurrent validity. J Burn Care Res. 2008;29(3):501–511. doi: 10.1097/BCR.0b013e3181710881.
  • Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528–1542. doi: 10.1177/147323000903700531.
  • Kim SH, Lee SJ, Kim HJ, et al. Aging-related changes in the mid-face skin elasticity in east Asian women. Arch Craniofac Surg. 2019;20(3):158–163. doi: 10.7181/acfs.2019.00213.
  • Busche MN, Thraen A-CJ, Gohritz A, et al. Burn scar evaluation using the cutometer(R) MPA 580 in comparison to “patient and observer scar assessment scale” and Vancouver scar scale. J Burn Care Res. 2018;39(4):516–526. doi: 10.1093/jbcr/irx009.
  • Ignatieva N, Zakharkina O, Dadasheva A, et al. Transformation of the dermal collagen framework under laser heating. J Biophotonics. 2019;12(12):e201960024.
  • Pyun H-B, Kim M, Park J, et al. Effects of collagen tripeptide supplement on photoaging and epidermal skin barrier in UVB-exposed hairless mice. Prev Nutr Food Sci. 2012;17(4):245–253. doi: 10.3746/pnf.2012.17.4.245.
  • Kramer EA, Rentschler ME. Energy-based tissue fusion for sutureless closure: applications, mechanisms, and potential for functional recovery. Annu Rev Biomed Eng. 2018;20(1):1–20. doi: 10.1146/annurev-bioeng-071516-044702.
  • Huang J, Xia S, Jia M, et al. Experimental study of the effect of temperature on collagen conformational changes in skin tissue welded by femtosecond laser. Optik. 2023;288:171184. doi: 10.1016/j.ijleo.2023.171184.
  • Derman İD, Şenel EC, Ferhanoğlu O, et al. Effect of heat level and expose time on denaturation of collagen tissues. Cell Mol Bioeng. 2021;14(1):113–119. doi: 10.1007/s12195-020-00653-w.
  • Kirsch KM, Zelickson BD, Zachary CB, et al. Ultrastructure of collagen thermally denatured by microsecond domain pulsed carbon dioxide laser. Arch Dermatol. 1998;134(10):1255–1259. doi: 10.1001/archderm.134.10.1255.
  • Reich S, Katchalsky A, Oplatka A. Dynamic-elastic investigation of the chemical denaturation of collagen fibers. Biopolymers. 1968;6(8):1159–1168. doi: 10.1002/bip.1968.360060810.
  • Mehta-Ambalal SR. Neocollagenesis and neoelastinogenesis: from the laboratory to the clinic. J Cutan Aesthet Surg. 2016;9(3):145–151. doi: 10.4103/0974-2077.191645.