551
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of acoustic-thermal simulations of in vivo magnetic resonance guided focused ultrasound ablative therapy

ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2301489 | Received 13 Sep 2023, Accepted 28 Dec 2023, Published online: 17 Jan 2024

References

  • Bachu VS, Kedda J, Suk I, et al. High-intensity focused ultrasound: a review of mechanisms and clinical applications. Ann Biomed Eng. 2021;49(9):1975–1991. doi: 10.1007/s10439-021-02833-9.
  • Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10(6):787–800. doi: 10.1016/0360-3016(84)90379-1.
  • Roberts WW, Hall TL, Ives K, et al. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol. 2006;175(2):734–738. doi: 10.1016/S0022-5347(05)00141-2.
  • Hynynen K, McDannold N, Sheikov NA, et al. Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage. 2005;24(1):12–20. doi: 10.1016/j.neuroimage.2004.06.046.
  • Legon W, Bansal P, Tyshynsky R, et al. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci Rep. 2018;8(1):10007. doi: 10.1038/s41598-018-28320-1.
  • 2022 State of the Field Report. Focused Ultrasound Foundation. 2022.
  • Pajek D, Hynynen K. The design of a focused ultrasound transducer array for the treatment of stroke: a simulation study. Phys Med Biol. 2012;57(15):4951–4968. doi: 10.1088/0031-9155/57/15/4951.
  • Goss SA, Frizzell LA, Kouzmanoff JT, et al. Sparse random ultrasound phased array for focal surgery. IEEE Trans Ultrason, Ferroelect, Freq Contr. 1996;43(6):1111–1121. doi: 10.1109/58.542054.
  • Gavrilov LR, Hand JW. A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(1):125–139. doi: 10.1109/58.818755.
  • De Bever J, Todd N, Payne A, et al. Adaptive model-predictive controller for magnetic resonance guided focused ultrasound therapy. Int J Hyperthermia. 2014;30(7):456–470. doi: 10.3109/02656736.2014.968223.
  • Prakash P, Diederich CJ. Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control. Int J Hyperthermia. 2012;28(1):69–86. doi: 10.3109/02656736.2011.630337.
  • Chen W, Zhu H, Zhang L, et al. Primary bone malignancy: effective treatment with high-intensity focused ultrasound ablation. Radiology. 2010;255(3):967–978. doi: 10.1148/radiol.10090374.
  • Hyvärinen M, Huang Y, David E, et al. Comparison of computer simulations and clinical treatment results of magnetic resonance-guided focused ultrasound surgery (MRgFUS) of uterine fibroids. Med Phys. 2022;49(4):2101–2119. doi: 10.1002/mp.15263.
  • Heydari M, Jahed M. Prediction of temperature distribution and volume of lesion during HIFU therapy. In: ITNG 2009—6th International Conference on Information Technology: New Generations; 2009; p. 1468–1473. doi: 10.1109/ITNG.2009.234.
  • Meaney PM, Clarke RL, Ter Haar GR, et al. A 3-D finite-element model for computation of temperature profiles and regions of thermal damage during focused ultrasound surgery exposures. Ultrasound Med Biol. 1998;24(9):1489–1499. doi: 10.1016/S0301-5629(98)00102-1.
  • Vyas U, Webb T, Bitton R, et al. Acoustic and thermal simulations of tcMRgFUS in patient specific models: validation with experiments. J Ther Ultrasound. 2015;3(S1):35. doi: 10.1186/2050-5736-3-S1-P35.
  • Ellens N, Hynynen K. Simulation study of the effects of near- and far-field heating during focused ultrasound uterine fibroid ablation using an electronically focused phased array: a theoretical analysis of patient safety. Med Phys. 2014;41(7):072902. doi: 10.1118/1.4883777.
  • Aubry J-F, Bates O, Boehm C, et al. Benchmark problems for transcranial ultrasound simulation: intercomparison of compressional wave models. J Acoust Soc Am. 2022;152(2):1003–1019. doi: 10.1121/10.0013426.
  • Vyas U, Christensen D. Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(6):1093–1100. doi: 10.1109/TUFFC.2012.2300.
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol (1985). 1998;85(1):5–34. doi: 10.1152/jappl.1998.85.1.5.
  • Todd N, Payne A, Parker DL. Model predictive filtering for improved temporal resolution in MRI temperature imaging. Magn Reson Med. 2010;63(5):1269–1279. doi: 10.1002/mrm.22321.
  • Johnson SL, Christensen DA, Dillon CR, et al. Validation of hybrid angular spectrum acoustic and thermal modelling in phantoms. Int J Hyperthermia. 2018;35(1):578–590. doi: 10.1080/02656736.2018.1513168.
  • Hansen M, Christensen D, Payne A. Experimental validation of acoustic and thermal modeling in heterogeneous phantoms using the hybrid angular spectrum method. Int J Hyperthermia. 2021;38(1):1617–1626. doi: 10.1080/02656736.2021.2000046.
  • Leung SA, Webb TD, Bitton RR, et al. A rapid beam simulation framework for transcranial focused ultrasound. Sci Rep. 2019;9(1):7965. doi: 10.1038/s41598-019-43775-6.
  • Treeby BE, Cox BT. k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J Biomed Opt. 2010;15(2):021314. doi: 10.1117/1.3360308.
  • Payne A, Merrill R, Minalga E, et al. A breast-specific MR guided focused ultrasound platform and treatment protocol: first-in-Human technical evaluation. IEEE Trans Biomed Eng. 2021;68(3):893–904. doi: 10.1109/TBME.2020.3016206.
  • Adams-Tew SI, Johnson S, Odéen H, et al. Validation of a drift-corrected 3D MR temperature imaging sequence for breast MR-guided focused ultrasound treatments. Magn Reson Imaging. 2023;96:126–134. doi: 10.1016/j.mri.2022.12.006.
  • Farrer AI, Odéen H, de Bever J, et al. Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS. J Ther Ultrasound. 2015;3(1):126. doi: 10.1186/s40349-015-0030-y.
  • Maruvada S, Harris GR, Herman BA, et al. Acoustic power calibration of high-intensity focused ultrasound transducers using a radiation force technique. J Acoust Soc Am. 2007;121(3):1434–1439. doi: 10.1121/1.2431332.
  • Dillon CR, Payne A, Christensen DA, et al. The accuracy and precision of two non-invasive, magnetic resonance-guided focused ultrasound-based thermal diffusivity estimation methods. Int J Hyperthermia. 2014;30(6):362–371. doi: 10.3109/02656736.2014.945497.
  • Dillon CR, Borasi G, Payne A. Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data. Phys Med Biol. 2016;61(2):923–936. doi: 10.1088/0031-9155/61/2/923.
  • Svedin BT, Beck MJ, Hadley JR, et al. Focal point determination in magnetic resonance-guided focused ultrasound using tracking coils. Magn Reson Med. 2017;77(6):2424–2430. doi: 10.1002/mrm.26294.
  • Hasgall PA, Di Gennaro F, Baumgartner C, et al. IT’IS database for thermal and electromagnetic parameters of biological tissues. Version 4.1, Feb 22, 2022, doi: 10.13099/VIP21000-04-1.itis.swiss/database
  • International Commission on Radiation Units and Measurements. ICRU report 61: tissue substitutes, phantoms and computational modelling in medical ultrasound (ICRU Publications, Bethesda, MD); 1998.
  • Renaud G, Callé S, Remenieras J-P, et al. Non-linear acoustic measurements to assess crack density in trabecular bone. Int J Non Linear Mech. 2008;43(3):194–200. doi: 10.1016/j.ijnonlinmec.2007.12.007.
  • Goss SA, Frizzell LA, Dunn F. Ultrasonic absorption and attenuation in mammalian tissues. Ultrasound Med Biol. 1979;5(2):181–186. doi: 10.1016/0301-5629(79)90086-3.
  • Lyons ME, Parker KJ. Absorption and attenuation in soft tissues II-experimental results. IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(4):511–521. doi: 10.1109/58.4189.
  • Cortela GA, Von Krüger MA, Negreira CA, et al. Influence of ultrasonic scattering in the calculation of thermal dose in ex-vivo bovine muscular tissues. Ultrasonics. 2016;65:121–130. doi: 10.1016/j.ultras.2015.10.011.
  • Tseng KK, Zhang R, Chen CM, et al. DNetUnet: a semi-supervised CNN of medical image segmentation for super-computing AI service. J Supercomput. 2021;77(4):3594–3615. doi: 10.1007/s11227-020-03407-7.
  • Hectors SJCG, Jacobs I, Moonen CTW, et al. MRI methods for the evaluation of high intensity focused ultrasound tumor treatment: current status and future needs. Magn Reson Med. 2016;75(1):302–317. doi: 10.1002/mrm.25758.
  • Johnson SL, Dillon C, Odéen H, et al. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique. Int J Hyperthermia. 2016;32(7):723–734. doi: 10.1080/02656736.2016.1216184.
  • Farrer AI, Almquist S, Dillon CR, et al. Phase aberration simulation study of MRgFUS breast treatments. Med Phys. 2016;43(3):1374–1384. doi: 10.1118/1.4941013.