140
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Classification of biomedical signals for differential diagnosis of Raynaud's phenomenon

, &
Pages 1830-1847 | Received 04 Nov 2013, Accepted 10 Feb 2014, Published online: 18 Mar 2014

References

  • J. Belch, Raynaud's phenomenon. Its relevance to scleroderma, Ann. Rheum. Dis. 50 (2005), pp. 839–845. doi: 10.1136/ard.50.Suppl_4.839
  • J.A. Block and W. Sequeira, Raynaud's phenomenon, Lancet 357 (2001), pp. 2042–2048. doi: 10.1016/S0140-6736(00)05118-7
  • F.L. Bookstein, Principle warps: Thin plate splines and the decomposition of deformations, IEEE Trans. Pattern Anal. Mach. Intell. 16 (1989), pp. 460–468.
  • L. Clemmensen, T. Hastie, D. Wiiten, and B. Ersboll, Sparse discriminant analysis, Technometrics 53 (2011), pp. 406–413. doi: 10.1198/TECH.2011.08118
  • I.S. Dhillon, S.M. Dharmendra, and S.S. Scott, Class visualization of high-dimensional data with applications, Comput. Stat. Data Anal. 41 (2002), pp. 59–90. doi: 10.1016/S0167-9473(02)00144-5
  • A. Di Carlo, Thermography and the possibilities for its applications in clinical and experimental dermatology, Clin. Dermatol. 13 (1995), pp. 329–336. doi: 10.1016/0738-081X(95)00073-O
  • I.L. Dryden and K.V. Mardia, Statistical Shape Analysis, Wiley, Chichester, 1998.
  • P. Du and X. Wang, Penalized likelihood functional regression, Stat. Sin. 24 (2014). 10.5705/ss.2012.235
  • J. Fan, Y. Feng, and X. Tong, A road to classification in high dimensional space: The regularized optimal affine discriminant, J. R. Stat. Soc. Ser. B 74 (2012), pp. 745–771. doi: 10.1111/j.1467-9868.2012.01029.x
  • L. Grosenick, S. Greer, and B. Knutson, Interpretable classifiers for fMRI improve prediction of purchases, IEEE Trans. Neural Syst. Rehabil. Eng. 16 (2008), pp. 539–547. doi: 10.1109/TNSRE.2008.926701
  • T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, New York, 2009.
  • G.M. James, Generalized linear models with functional predictor variables, J. R. Stat. Soc. Ser. B 64 (2002), pp. 411–432. doi: 10.1111/1467-9868.00342
  • G.M. James and T.J. Hastie, Functional linear discriminant analysis for irregularly sampled curves, J. R. Stat. Soc. Ser. B 63 (2001), pp. 533–550. doi: 10.1111/1467-9868.00297
  • J.T. Kent and K.V. Mardia, The link between kriging and thin-plate splines, in Probability, Statistics and Optimization, F.P. Kelly, ed., Wiley, New York, 1994, pp. 324–339.
  • J. Kittler and P.C. Young, A new approach to feature selection based on the Karhünen-Loéve expansion, Pattern Recognit. 5 (1973), pp. 335–352. doi: 10.1016/0031-3203(73)90025-3
  • W.J. Krzanowsky, P. Jonathan, W.V. McCarthy, and M.R. Thomas, Discriminant analysis with singular covariance matrices: Methods and applications to spectroscopic data, J. R. Stat. Soc. Ser. C 44 (1995), pp. 101–115.
  • W.J. Krzanowsky and F.H.C. Marriott, Multivariate Analysis: Classification, Covariance Structures and Repeated Measurements, Vol. 2, Arnold (Holder Headline Group), London, 1995.
  • C. Leng, Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data, Comput. Biol. Chem. 32 (2008), pp. 417–425. doi: 10.1016/j.compbiolchem.2008.07.015
  • K.V. Mardia, J.T. Kent, and J.M. Bibby, Multivariate Analysis, Academic Press, Duluth, MN, 1979.
  • K.V. Mardia, J.T. Kent, C.R. Goodall, and J.A. Little, Kriging and splines with derivative information, Biometrika 83 (1996), pp. 207–221. doi: 10.1093/biomet/83.1.207
  • A. Mariotti, G. Grossi, P. Amerio, G. Orlando, P.A. Mattei, A. Tulli, G.L. Romani, and A. Merla, Finger thermoregulatory model assessing functional impairment in Raynaud's phenomenon, Ann. Biomed. Eng. 37 (2009), pp. 2631–2639. doi: 10.1007/s10439-009-9788-9
  • G.J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, John Wiley and Sons, Hoboken, NJ, 2004.
  • A. Merla, L. Di Donato, S. Pisarri, M. Proietti, F. Salsano, and G.L. Romani, Infrared functional imaging applied to Raynaud's phenomenon, IEEE Eng. Med. Biol. Mag. 21 (2002), pp. 73–79. doi: 10.1109/MEMB.2002.1175141
  • A. Merla, G.L. Romani, S. Di Luzio, L. Di Donato, G. Farina, M. Proietti, S. Pisarri, and F. Salsano, Raynaud's phenomenon: Infrared functional imaging applied to diagnosis and drug effect, Int. J. Immunopathol. Pharmacol. 15 (2002), pp. 41–52.
  • H.G. Müller and U. Stadtmüller, Generalized functional linear models, Ann. Stat. 33 (2005), pp. 463–976. doi: 10.1214/009053604000001156
  • A.K. Murray, L.T. Moore, J.B. Manning, C. Taylor, C.E.M. Griffiths, and A.L. Herrick, Noninvasive imaging techniques in the assessment of scleroderma spectrum disorders, Arthritis Rheum. 61 (2009), pp. 1103–1111. doi: 10.1002/art.24645
  • D. O'Reilly, L. Taylor, K. El-Hadivi, and M.I. Jayson, Measurement of cold challenge response in primary Raynaud's phenomenon and Raynaud's phenomenon associated with systemic sclerosis, Ann. Rheum. Dis. 51 (1992), pp. 1193–1196. doi: 10.1136/ard.51.11.1193
  • J.O. Ramsay and B.W. Silverman, Functional Data Analysis, Springer-Verlag, New York, 1997.
  • O. Schuhfried, G. Vacariu, T. Lang, M. Korpan, H.P. Kiener, and V. Fialka-Moser, Thermographic parameters in the diagnosis of secondary Raynaud's phenomenon, Arch. Phys. Med. Rehabil. 81 (2000), pp. 495–499. doi: 10.1053/mr.2000.4870
  • M. Stone, Cross-validatory choice and assessment of statistical predictions (with discussion), J. R. Stat. Soc. Ser. B 36 (1974), pp. 3–23.
  • J.D. Tebbens and P. Schlesinger, Improving implementation of linear discriminant analysis for the high dimension/small sample size problem, Comput. Stat. Data Anal. 52 (2007), pp. 423–437. doi: 10.1016/j.csda.2007.02.001
  • The MathWorks, Matlab, Version 7.10.0.499, Natick, MA, 2010.
  • R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proc. Natl. Acad. Sci. USA 99 (2002), pp. 6567–6572. doi: 10.1073/pnas.082099299
  • R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, Class prediction by nearest shrunken centroids, with applications to DNA microarrays, Stat. Sci. 18 (2003), pp. 104–117. doi: 10.1214/ss/1056397488
  • N.T. Trendafilov and K. Vines, Simple and interpretable discrimination, Comput. Stat. Data Anal. 53 (2009), pp. 979–989. doi: 10.1016/j.csda.2008.11.018
  • G. Wahba, Spline Models for Observational Data, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.
  • C. Wang, L. Cao, and B. Miao, Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data, Comput. Stat. Data Anal. 66 (2013), pp. 140–149. http://dx.doi.org/10.1016/j.csda.2013.04.003 doi: 10.1016/j.csda.2013.04.003
  • D.M. Witten and R. Tibshirani, Penalized classification using Fisher's linear discriminant, J. R. Stat. Soc. Ser. B 73 (2011), pp. 753–772. doi: 10.1111/j.1467-9868.2011.00783.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.